**-__Srmc*mre ami

e I merp ret.::ztzoﬁ

Structure and Interpretation of Signals and Systems

Edward A. Lee and Pravin Varaiya
eal @eecs.berkeley.edu, varaiya@eecs.berkeley.edu
Electrical Engineering & Computer Science
University of California, Berkeley

July 4, 2000

Copyright (©2000
Edward A. Lee and Pravin Varaiya
All rights reserved

Contents

Preface Xiii
Notes to Instructors XVii
1 Signalsand Systems 1
11 Signals. o e e 2
111 Audiosignals 2

112 ImMages o 5

Probing further: Household electrical power 7

113 Videosignals e 10

114 Signadsrepresenting physical attributes 12

115 SequenCes. 13

116 Discretesignasandsampling 14

1.2 Systems e 19
121 Systemsasfunctions 0. 19

122 Telecommunicationssystems. 20

Probing further: Wirelesscommunication 23

Probing further: LEOtelephony 24

Probing further: Encryptedspeech L. 28

123 Audiostorageandretrieval oo 29

124 Modemnegotiation 30

125 Feedback control system 31

13 SUMMAIY . . . 34

iv CONTENTS
2 Defining Signals and Systems 37
21 Definingfunctions 37
211 Declarativeassignment 37

212 Graphs e 39

Probing further: Relations 41

213 Tables. 41

214 Procedures 42

215 Composition 42

Probing further: Declarative interpretation of imperative definitions 46

2.1.6 Declarativevs. imperative e 47

22 Definingsignals 48
2.2.1 Declarative definitions Lo 49

2.2.2 Imperativedefinitions 49

223 Physcamodeing 50

Probing further: Physicsof aTuningFork 51

23 Definingsystems e e e 52
231 Memorylesssystems 53

2.3.2 Differential equations. 53

2.3.3 Differenceequations 54

234 Composing systemsusing block diagrams 56

Probing further: Compositionof graphs 58

3 State-Space Models 65
31 StatemachineS e 65
L1 Updates 67

312 Stuttering e e 67

3.2 Finitestatemachines 69
321 Statetransitiondiagrams 69

322 Updatetable 74

3.3 Nondeterministic statemachines 78

CONTENTS

34

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

51

52

5.3

331 Statetransitiondiagram
332 Setsandfunctionsmodel
Simulation and bismulation
341 Reatingbehaviors e

Composing State M achines

Synchrony e e
Side-by-side composition
Cascade composition
Product-form inputsandoutputs

Genera feedforward composition o

4.7.1 Feedback composition withnoinputs
4.7.2 Feedback composition withinputs
Probing further: Least fixedpoint.
4.7.3 Feedback composition of multiple machines.

Nondeterministic machines o i i e e

Linear Systems

Operation of aninfinitestatemachine
Basics: Arithmeticontuplesof real numbers.
511 Time
Basics: Functionsyieldingtuples.
Basics: Linear functions o
One-dimensional SISOsystems i i ittt
521 Zero-stateand zero-inpUtresponse.o e e
Basics: Matricesandvectors
Basics: Matrix arithmetic

Multidimensional SISOsystems

78
81
83
88

\Y

7 Frequency Response

54
55
5.6

Multidimensional MIMO systems

Linear systems

Continuous-time state-space models

Probing further: Approximating continuous-time systems

Frequency Domain

6.1 Frequency decomposition

6.2
6.3
6.4
6.5

6.6

7.1

Basics. Frequencies in Hertz and radians
Basics: Ranges of frequencies

Probing further: Circle of fifths

Spatial frequency
Periodic and finite signals

Fourier series

Probing further: Convergence of the Fourier series
6.5.1 Uniqueness of the Fourier series
6.5.2 Periodic, finite, and aperiodic signals
6.5.3 Fourier series approximations to images
Discrete-time signals
Basics: Discrete-time frequencies
6.6.1 Periodicity

6.6.2 Thediscrete-time Fourier series

LTlsystems
7.1.1 Timeinvariance
7.1.2 Linearity
7.1.3 Linearity and time-invariance

7.1.4 Discrete-time LTI systems

CONTENTS

CONTENTS vii

7.2 Findingandusingthefrequency response 183
Basics: Sinusoids in terms of complex exponentials 184
Tipsand Tricks: Phasors 185
7.2.1 TheFourier series with complex exponentials 190
722 Examples 191

7.3 Determining the Fourier series coefficients. 191
Probing further: Relating DFS coefficients 192
Probing further: Formulafor Fourier series coefficients 194
Probing further: Exchanging integralsand summations 195
7.31 Negativefrequencies e 195

7.4 Freguency response and thefourier series L. 195

7.5 Frequency response of compositesystems L. 196
751 Cascadeconnection. 196
752 Feedback connection 198
Probing further: Feedback systemsareLTI. 200

8 Filtering 205

81 Convolution e 206
811 Convolutionsumandintegral 208
812 IMpulses e 211
8.1.3 Signals assums of weighted deltafunctions 212
8.1.4 Impulseresponseand convolution 214

8.2 Frequency responseand impulseresponseo 217

83 Causdlity 220

8.4 Finiteimpulseresponse (FIR)filters 220
Probing further: Causality 221
84.1 Desgnof FIRfilters 223
84.2 Decibels. 227
Probing further: Decibels 229

85 Infiniteimpulseresponse (IIR) filters. 230

viii CONTENTS

8.5.1 Designing lIRfilters 230

8.6 Implementationof filters L 232
8.6.1 Matlabimplementation. 234
8.6.2 Signaflowgraphs 234
Probing further: Javaimplementation of an FIRfilter 235
Probing further: Programmable DSP implementation of an FIRfilter 236

9 TheFour Fourier Transforms 245
9.1 NOtation o 245
9.2 TheFourierseries(FS) 246
9.3 Thediscrete Fourier transform (DFT) 247
Probing further: Showing inverserelations. 248

9.4 Thediscrete-Time Fourier transform (DTFT) 250
9.5 Thecontinuous-time Fourier transform. 251
Probing further: Multiplyingsignals 253

9.6 Relationshiptoconvolution. 254
9.7 Propertiesandexamples 254
9.71 Conjugatesymmetry e 254
972 Timeshifting 255
073 Linearity 258
974 Congtantsignals 259
9.7.5 Frequency shifting and modulation 260

10 Sampling and Reconstruction 267
101 Sampling e e 267
Basics Units 268
10.1.1 Samplingasinusoid 268
1012 Aliasing o 268
10.1.3 Perceived pitchexperiment 270

10.1.4 Avoiding aliasing ambiguities Lo 273

CONTENTS iX

10.2 ReECONSITUCLION o o e 273
10.2.1 A modd forreconstruction 275

10.3 The Nyquist-Shannon samplingtheorem 277
Probing further: Sampling 278

A Setsand Functions 285
Al Sels . . e 285
A1l Assignmentandassertion 286
Al2 Setsof sets 287
A.13 Vaiablesandpredicates 287
Probing further: PredicatesinMatlab. 288
A.14 Quantificationoversets. e 289
A.l5 Someuseful sets 290
A.1.6 Set operations: union, intersection, complement. 291
A.1.7 Predicateoperations 291
A.1.8 Permutationsand combinations 293
AL9 Product SetS. e e 293
Basics: Tuples, strings, andsequences oo 294
A.1.10 Evaluating apredicate expression 299

A2 FUNCLIONS e 302
A.21 Definingfunctions e 303
A.2.2 Tuplesand sequencesasfunctions 304
A.23 Functionproperties. e 304
Probing further: Infinitesets 305
Probing further: Evenbiggersets. 306

A3 SUMMAY . . . e e e e e 307
B Complex Numbers 311
B.1 Imaginary nUMDErS 311
B.2 Arithmeticof imaginary numbers. o 312

CONTENTS

B.3 Complexnumbers. 313
B.4 Arithmeticof complexnumbers oL 314
B.5 Exponentials 315
B.6 Polarcoordinates 316
Laboratory Exercises 323
Cl Arraysandsound 326
Cl1 Inlabsection 326
C.1.2 Independentsection 329
C2 Images. 332
C21 ImagesinMatlab 332
C22 Inlabsection 334
C.23 Independent section 336
C3 Statemachines 340
C31 Background 340
C32 Inlabsection 343
C.33 Independent section 344
C4 Control Systems e 347
C41 Background 347
C42 Inlabsection 349
C4.3 Independent section 350
C.5 Differenceequations 352
C51 Inlabsection 352
Cb5.2 Independent section 353
C.6 Differential equations e 356
C6.1 Background 356
C6.2 Inlabsection 358
C.6.3 Independentsection e 359
C.7 Spectrum e e e 363

C71 Background 363

CONTENTS Xi

C72 Inlabsection 364
C.7.3 Independent section 369
C.8 Combfilters 372
C81 Background 372
C82 Inlabsection 375
C.83 Independent section 376
C.9 Pluckedstringinstrument 378
C91 Background 378
C92 Inlabsection 380
C.93 Independent section 381
C.10 Modulation and demodulation L 384
C.10.1 Background L 384
C10.2 Inlabsection 390
C.10.3 Independent section 391
Cll Samplingand aliasing 393
Cll1l Inlabsection 393

Index 399

Xii CONTENTS

Preface

This book is a reaction to a trauma in our discipline. We have al been aware for some time that
“electrical engineering” has lost touch with the “electrical.” Electricity provides the impetus, the
pressure, the potential but not the body. How else could microelectromechanical systems (MEMYS)
become so important in EE? I s this not a mechanical engineering discipline? Or signal processing.
Is this not mathematics? Or digital networking. Isthis not computer science? How isit that control
system are applied equally comfortably to aeronautical systems, structural mechanics, electrical
systems, and options pricing?

Like so many engineering schools, Berkeley used to have an introductory course entitled “Intro-
duction to Electrical Engineering” that was about analog circuits. This quaint artifact spoke more
about the origins of the discipline that its contemporary reality. Like engineering topics in schools
of mining (which Berkeley’s engineering school once was), ours has evolved more rapidly than the
institutional structure around it.

Abelson and Sussman, in Structure and Interpretation of Computer Progra(hl T Press), a book
that revolutionized computer science education, faced a similar transition in their discipline.

“Underlying our approach to this subject is our conviction that ‘computer science’ is
not a science and that its significance has little to do with computers.”

Circuits used to be the heart of electrical engineering. It is arguable that today it is the analytical
technigues that emerged from circuit theory that are the heart of the discipline. The circuits them-
selves have become an area of specialization. It is an important area of specialization, to be sure,
with high demand for students, who command high salaries. But it is a specialization nonetheless.

Before Abelson and Sussman, computer programming was about getting computers to do your
bidding. In the preface to Structure and Interpretation of Computer Progrartiey say

“First, we want to establish the idea that a computer language is not just a way of
getting a computer to perform operations but rather that it is a novel formal medium
for expressing ideas about methodology. Thus, programs must be written for people to
read, and only incidentally for machines to execute.”

In the origins of our discipline, a signal was a voltage that varies over time, an electromagnetic
waveform, or an acoustic waveform. Now it is likely to be a sequence of discrete messages sent

Xiii

Xiv Preface

over the internet using TCP/IP. The stateof a system used to be adequately captured by variables
in a differential equation. Now it is likely to be the registers and memory of a computer, or more
abstractly, a process continuation, or a set of concurrent finite state machines. A systemused to
be well-modeled by alinear time-invariant transfer function. Now it is likely to be a computation
in a Turing-complete computational engine. Despite these fundamental changes in the medium
with which we operate, the methodology remains robust and powerful. It is the methodology, not
the medium, that defines our field. Our graduates are more likely to write software than to push
electrons, and yet we recognize them as electrical engineers.

Fundamental limits have also changed. Although we still face thermal noise and the speed of light,
we are likely to encounter other limits before we get to these, such as complexity, computability,
chaos, and, most commonly, limits imposed by other human constructions. A voiceband data mo-
dem, for example, faces the telephone network, which was designed to carry voice, and offers as
immutable limits such non-physical constraints as its 3 kHz bandwidth. DSL modems face reg-
ulatory constraints that are more limiting than their physical constraints. Computer-based audio
systems face latency and jitter imposed by the operating system.

The mathematical basis for the discipline has also shifted. Although we still use calculus and
differential equations, we frequently need discrete math, set theory, and mathematical logic. Indeed,
amagjor theme of this book isto illustrate that formal techniques can be used in a very wide range
of contexts. Whereas the mathematics of calculus and differential equations evolved to describe the
physical world, the world we face as system designers often has non-physical properties that are not
such a good match to this mathematics. Instead of abandoning formality, we need to broaden the
mathematical base.

Again, Abelson and Sussman faced a similar conundrum.

“... we believe that the essential material to be addressed by a subject at this level is
not the syntax of particular programming language constructs, nor clever algorithms
for computing particular functions efficiently, nor even the mathematical analysis of
algorithms and the foundations of computing, but rather the technigues used to control
the intellectual complexity of large software systems.”

This book is about signals and systems, not about large software systems. But it takes a compu-
tational view of signals and systems. It focuses on the methods “used to control the intellectual
complexity,” rather than on the physical limitations imposed by the implementations of old. Appro-
priately, it puts emphasis on discrete-time modeling, which is pertinent to the implementations in
software and digital logic that are so common today. Continuous-time models describe the physical
world, with which our systems interact. But fewer of the systems we engineer operate directly in
this domain.

If imitation is the highest form of flattery, then it should be obvious whom we are flattering. Our
title isablatant imitation of Structure and Interpretation of Computer Prograrii$ie choice of title
reflects partly a vain hope that we might (improbably) have as much influence as they have. But
more redistically, it reflects a sympathy with their cause. Like us, they faced an identity crisis in
their discipline.

Preface XV

“The computer revolution isarevolution in the way we think and in the way we express
what wethink. The essence of this change iswhat might best be called procedural epis-
temology- the study of the structure of knowledge from an imperative point of view,
as opposed to the more declarative point of view taken by classical mathematical sub-
jects. Mathematics provides a framework for dealing precisely with notions of ‘what
is.” Computation provides afram-work for dealing precisely with notions of ‘how to’.”

Indeed, amajor themein our book isthe connection between imperative (computational) and declar-
ative (mathematical) descriptions of signals and systems. The laboratory component of the text, in
our view, is an essential part of a complete study. The web content, with its extensive applets il-
lustrating computational concepts, is an essential complement to the mathematics. Traditional elec-
trical engineering has emphasized the declarative view. Modern electrical engineering has much
closer ties to computer science, and has to complement this declarative view with an imperative
one.

Besides being a proper part of the intellectual discipline, an imperative view has another key advan-
tage. It enables amuch closer connection with “real signals and systems,” which are often too messy
for a complete declarative treatment. While a declarative treatment can easily handle a sinusoidal
signal, an imperative treatment can easily handle a voice signal. One of our objectives in designing
this text and the course on which it is based isto illustrate concepts with real signals and systems at
every step

This is quite hard to do in a textbook. The print medium biases authors towards the declarative
view simply because its static nature is better suited to the declarative view than to the imperative
view. Our solution to this problem has been heavily influenced by the excellent and innovative text-
books by Steiglitz, A Digital Signal Processing Primer — with Applications to Digital Audio and
Computer Musi¢Addison-Wesley), and McClellan, Schafer and Yoder, DSP First — A Multimedia
Approach Steiglitz leverages natural human interest in the very human field of music to teach,
spectacularly gently, very sophisticated concepts in signals and systems. McClellan, Schafer and
Yoder beautifully integrate web-based content and laboratory exercises, complementing the tradi-
tional mathematical treatment with accessible and highly motivational manipulation of real signals.
If you are familiar with these books, you will see their influence al over the laboratory exercises
and the web content.

XVi Preface

Notesto | nstructors

The course begins by describing signals as functions, focusing on characterizing the domain and the
range. Systems are also described as functions, but now the domain and range are sets of signals.
Characterizing these functions is the topic of this course. Sets and functions provide the unifying
notation and formalism.

We begin by describing systems using the notion of state, first using automata theory and then
progressing to linear systems. Frequency domain concepts are introduced as a complementary
toolset, different from that of state machines, and much more powerful when applicable. Frequency
decomposition of signalsisintroduced using psychoacoustics, and gradually developed until all four
Fourier transforms (the Fourier series, the Fourier transform, the discrete-time Fourier transform,
and the DFT) have been described. We linger on the first of these, the Fourier series, since it is
conceptually the easiest, and then quickly present the others as simple generalizations of the Fourier
series. Finally, the course closes by using these concepts to study sampling and aliasing, which
hel ps bridge the computational world with the physical world.

This text has evolved to support a course we now teach regularly at Berkeley to about 500 students
per year. An extensive accompanying web page is organized around Berkeley’s 15 week semester,
although we believe it can be adapted to other formats. The course organization at Berkeley is as
follows:

Week 1—SignalsasFunctions—Chapters1 and 2. Thefirst week motivates forthcoming material
by illustrating how signals can be modeled abstractly as functions on sets. The emphasis is on
characterizing the domain and the range, not on characterizing the function itself. The startup
sequence of a voiceband data modem is used as an illustration, with a supporting applet that plays
the very familiar sound of the startup handshake of V 32.bis modem, and examines the waveform in
both the time and frequency domain. The domain and range of the following signal typesis given:
sound, images, position in space, angles of a robot arm, binary sequences, word sequences, and
event sequences.

Week 2 — Systems as Functions — Chapters 1 and 2. The second week introduces systems as
functions that map functions (signals) into functions (signals). Again, it focuses not on how the
function is defined, but rather on what is its domain and range. Block diagrams are defined as
avisual syntax for composing functions. Applications considered are DTMF signaling, modems,
digital voice, and audio storage and retrieval. These all share the property that systems are required
to convert domains of functions. For example, to transmit a digital signal through the telephone
system, the digital signal has to be converted into a signal in the domain of the telephone system

XVii

XViii Notes to Instructors

(i.e., abandlimited audio signal).

Week 3 - State— Chapter 3. Week 3 iswhen the students start seriously the laboratory component
of the course. The first lecture in this week is therefore devoted to the problem of relating declar-
ative and imperative descriptions of signals and systems. This sets the framework for making the
intellectual connection between the labs and the mathematics.

The purpose of thisfirst |ab exercise isto explore arraysin Matlab and to use them to construct audio
signals. Thelabisdesigned to help students become familiar with the fundamental s of Matlab, while
applying it to synthesis of sound. In particular, it introduces the vectorization feature of the Matlab
programming language. The lab consists of explorations with sinusoidal sounds with exponential
envelopes, relating musical notes with frequency, and introducing the use of discrete-time (sampl ed)
representations of continuous-time signal's (sound).

Note that there is some potential confusion because Matlab uses the term “function” somewhat
more loosely than the course does when referring to mathematical functions. Any Matlab command
that takes arguments in parentheses is called a function. And most have a well-defined domain and
range, and do, in fact, define amapping from the domain to the range. These can be viewed formally
as a (mathematical) functions. Some, however, such as pl ot and sound are a bit harder to view
thisway. The last exercise in the lab explores this relationship.

The rest of the lecture content in the third week is devoted to introducing the notion of state and
state machines. State machines are described by a function updatethat, given the current state and
input, returns the new state and output. In anticipation of composing state machines, the concept of
stutteringis introduced. Thisis a dightly difficult concept to introduce at this time because it has
no utility until you compose state machines. But introducing it now means that we don’'t have to
change the rules later when we compose machines.

Week 4 — Nondeter minism and Equivalence — Chapter 3. The fourth week deals with nonde-
terminism and equivalence in state machines. Equivalence is based on the notion of simulation, so
simulation relations and bisimulation are defined for both deterministic and nondeterministic ma-
chines. These are used to explain that two state machines may be equivalent even if they have a
different number of states, and that one state machine may be an abstraction of another, in that it
has al input/output behaviors of the other (and then some).

During thisweek, students do a second set of lab exercises that explore the representation of images
in Matlab, relating the Matlab use of color maps with a formal functional model. It discusses the
file formats for images, and explores the compression that is possible with colormaps and with
more sophisticated techniques such as JPEG. The students construct a simple movie, reinforcing
the notions of sampling introduced in the previous lab. They also blur an image and create asimple
edge detection algorithm for the same image. Thislab a so reinforces the theme of the previous one
by asking students to define the domain and range of mathematical models of the relevant Matlab
functions. Moreover, it begins an exploration of the tradeoffs between vectorized functions and
lower-level programming constructs such as for loops. The edge detection algorithm is challenging
(and probably not practical) to design using only vectorized functions. Asyou can see, the content
of the labs lags the lecture by about one week so that students can use the lab to reinforce material
that they have already had some exposure to.

Notes to Instructors XiX

Week 5 - Composition — Chapter 4. Thisweek is devoted to composition of state machines. The
deep concepts are synchrony, which gives a rigorous semantics to block diagrams, and feedback.
The most useful concept to help subsequent material is that feedback |oops with delays are always
well formed.

The lab in this week (C.3) uses Matlab as a low-level programming language to construct state
machines according to a systematic design pattern that will alow for easy composition. The theme
of the lab is establishing the correspondence between pictorial representations of finite automata,
mathematical functions giving the state update, and software realizations.

The main project in this lab exercise is to construct a virtual pet. This problem isinspired by the
Tamagotchi virtual pet made by Bandai in Japan. Tamagotchi pets, which trandate as “cute little
egos,” were extremely popular inthe late 1990’s, and had behavior considerably more complex than
that described in this exercise. The pet is cat that behaves as follows:

It starts out happy If you petit, it purrs. If you feedit, it throws up If time passes
it gets hungryand rubs against your legs. If you feed it when it is hungry, it purrs and
gets happy. If you pet it when it is hungry, it bitesyou. If time passes when it is hungry,
it dies

The italicized words and phrases in this description should be elements in either the state space
or the input or output alphabets. Students define the input and output alphabets and give a state
transition diagram. They construct a function in Matlab that returns the next state and the output
given the current state and the input. They then write a program to execute the state machine until
the user types’quit’ or ’exit.

Next, the students design an open-loop controller that keeps the virtual pet alive. This illustrates
that systematically constructed state machines can be easily composed.

This lab builds on the flow control constructs (for loops) introduced in the previous labs and intro-
duces string manipulation and the use of M files.

Week 6 —Linear Systems. We consider linear systems as state machines where the state is a vector
of reals. Difference equations and differential equations are shown to describe such state machines.
The notions of linearity and superposition are introduced.

In the previous lab, students were able to construct an open-loop controller that would keep their
virtual pet aive. In thislab (C.4), they modify the pet so that its behavior is nondeterministic. In
particular, they modify the cat’'s behavior so that if it is hungry and they feed it, it sometimes gets
happy and purrs (as it did before), but it sometimes stays hungry and rubs against your legs. They
then attempt to construct an open-loop controller that keeps the pet alive, but of course no such
controller is possible without some feedback information. So they are asked to construct a state
machine that can be composed in afeedback arrangement such that it keeps the cat alive.

The semantics of feedback in this course are consistent with tradition in signals systems. Computer
scientists call this style “ synchronous composition,” and define the behavior of the feedback system
asa(least or greatest) fixed point of amonotonic function on a partial order. In acourse at thislevel,
we cannot go into this theory in much depth, but we can use this example to explore the subtleties

XX Notes to Instructors

of synchronous feedback.

In particular, the controller composed with the virtual pet does not, at first, scem to have enough
information available to start the model executing. The input to the controller, which is the output
of the pet, is not available until the input to the pet, which isthe output of the controller, is available.
There is a bootstrapping problem. The (better) students learn to design state machines that can
resolve this apparent paradox.

Most students find this lab quite challenging, but also very gratifying when they figure it out. The
concepts behind it are deep, and the better students realize that. The weaker students, however, just
get by, getting something working without really understanding how to do it systematically.

Week 7 — Response of Linear Systems. Matrices and vectors are used to compactly describe
systemswith linear and time-invariant state updates. Impulses and impulse response are introduced.
The deep concept here islinearity, and the benefitsit brings, specifically being able to write the state
and output response as a convolution sum.

We begin to develop frequency domain concepts, using musical notes as away to introduce the idea
that signals can be given as sums of sinusoids.

Thereis no lab exercise this week, giving students more time to prepare for the first midterm exam.

Week 8 — Frequency Domain. This week introduces frequency domain concepts and the Fourier
series. Periodic signals are defined, and Fourier series coefficients are calculated by inspection
for certain signals. The frequency domain decomposition is motivated by the linearity of systems
considered last week (using the superposition principle), and by psychoacoustics and music.

In the lab in this week (C.5), the students build on the previous exercise by constructing state ma-
chine models (now with infinite states and linear update equations). They build stable, unstable, and
marginally stable state machines, describing them as difference equations.

The prime example of a stable system yields a sinusoidal signal with a decaying exponentia enve-
lope. The corresponding state machine is a simple approximate model of the physics of a plucked
string instrument, such as a guitar. It is aso the same signal that the students generated in the first
lab by more direct (and more costly) methods. They compare the complexity of the state machine
model with that of the sound generators that they constructed in the first lab, finding that the state
machine model yields sinusoidal outputs with considerably fewer multiplies and adds than direct
calculation of trigonometric and exponential functions.

The prime example of a marginaly stable system is an oscillator. The students discover that an
oscillator isjust aboundary case between stable and unstable systems.

Week 9 — Frequency Response. In thisweek, we consider linear, time-invariant (LTI) systems, and
introduce the notion of frequency response. We show that acomplex exponential is an eigenfunction
of an LTI system. The Fourier seriesis redone using complex exponentias, and frequency response
is defined in terms of this Fourier series, for periodic inputs.

The purpose of the lab in week 9 (C.6) is to experiment with models of continuous-time systems
that are described as differential equations. The exercises aim to solidify state-space concepts while
giving some experience with software that models continuous-time systems.

Notes to Instructors XXi

The lab uses Simulink, a companion to Matlab. The lab is self contained, in the sense that no
additional documentation for Simulink is needed. Instead, we rely on the on-line help facilities.
However, these are not as good for Simulink as for Matlab. The lab exercise have to guide the
students extensively, trying to steer clear of the more confusing parts. As a result, this lab is bit
more " cookbook-like” than the others.

Simulink is a block-diagram modeling environment. As such, it has a more declarative flavor than
Matlab, which isimperative. You do not specify exactly how signals are computed in Simulink. You
simply connect together blocks that represent systems. These blocks declare arelationship between
the input signal and the output signal. One of the reasons for using Simulink is to expose students
to this very different style of programming.

Simulink excels at modeling continuous-time systems. Of course, continuous-time systems are not
directly realizable on a computer, so Simulink must discretize the system. There is quite a bit of
sophistication in how thisis done, but the students are largely unaware of that. The fact that they do
not specify how it is done underscores the observation that Simulink has a declarative flavor.

Week 10 —Filtering. The use of complex exponentias isfurther explored, and phasors and negative
frequencies are discussed. The concept of filtering is introduced, with the terms lowpass, bandpass,
and highpass, with applications to audio and images. Composition of LTI systems is introduced,
with alight treatment of feedback.

The purpose of the lab (C.7) is to learn to examine the frequency domain content of signals. Two
methods are used. The first method is to plot the discrete Fourier series coefficients of finite sig-
nals. The second isto plot the Fourier series coefficients of finite segments of time-varying signals,
creating a spectrogram.

The students have, by this time, done quite a bit with Fourier series, and have established the rela
tionship between finite signals and periodic signals and their Fourier series.

Matlab does not have any built-in function that directly computes Fourier series coefficients, so an
implementation using the FFT is given to the students. The students construct a chirp, listen to it,
study itsinstantaneous frequency, and plot its Fourier series coefficients. They then compute atime-
varying discrete-Fourier series using short segments of the signal, and plot the result in a waterfall
plot. Finaly, they render the same result as a spectrogram, which leverages their study of color
maps in lab 2. The students also render the spectrogram of a speech signal.

The lab concludes by studying beat signals, created by summing sinusoids with closely spaced
frequencies. A single Fourier series analysis of the complete signal shows its structure consisting
of two distinct sinusoids, while a spectrogram shows the structure that corresponds better with what
the human ear hears, which is asinusoid with alow-frequency sinusoidal envelope.

Week 11 — Convolution. We describe signals as sums of weighted impulses and then use linearity
and time invariance to derive convolution. FIR systems are introduced, with a moving average
being the prime example. Implementation of FIR systems in software and hardware is discussed,
and signal flow graphs are introduced. Causality is defined.

The purpose of the lab (C.8) isto use a comb filter to deeply explore concepts of impulse response
and frequency response, and to lay the groundwork for much more sophisticated musical instrument

XXii Notes to Instructors

synthesis done in the next lab. The “sewer pipe’ effect of a comb filter is distinctly heard, and the
students are asked to explain the effect in physical terms by considering sound propagation in a
cylindrical pipe. The comb filter is analyzed as a feedback system, making the connection to the
virtual pet.

The lab again uses Simulink, this time for discrete-time processing. Discrete-time processing is
not the best part of Simulink, so some operations are awkward. Moreover, the blocks in the block
libraries that support discrete-time processing are not well organized. It can be difficult to discover
how to do something as ssimple as an N-sample delay or an impulse source. The lab has to identify
the blocks that the students need, which again gives it a more “cookbook-like” flavor. The students
cannot be expected to wade through the extensive library of blocks, most of which will seem utterly
incomprehensible.

Week 12 —Fourier Transforms. We relate frequency response and convolution, building the bridge
between time and frequency domain views of systems. We introduce the DTFT and the continuous-
time Fourier transform and derive various properties. These transforms are described as generaliza-
tions of the Fourier series where the signal need not be be periodic.

Thereisno lab exercise in this week, to allow time to prepare for the second midterm.

Week 13 — Sampling and Aliasing. We discuss sampling and aliasing as a major application of
Fourier analysis techniques. Emphasis is on intuitive understanding of aliasing and its relationship
to the periodicity of the DTFT. The Nyquist-Shannon sampling theorem is stated and related to this
intuition, but its proof is not emphasi zed.

The purpose of the lab (C.9) is to experiment with models of a plucked string instrument, using it to
deeply explore concepts of impulse response, frequency response, and spectrograms. The methods
discussed in this lab were invented by Karplus and Strong [1]. The design of the lab itself was
inspired by the excellent book of Steiglitz [5].

The lab uses Simulink, modifying the comb filter of the previous lab in three ways. First, the comb
filter isinitialized with random state, leveraging the concept of zero-input state response, studied
previously with state-space models. Then it adds a lowpass filter to the feedback loop to create a
dynamically varying spectrum, and it uses the spectrogram analysis developed in previous labs to
show the effect. Finally, it adds an allpass filter to the feedback loop to precisely tune the resulting
sound by adjusting the resonant freguency.

Week 14 — Filter Design. This week begins a review that focuses on how to apply the techniques
of the course in practice. Filter design is considered with the objective of illustrating how frequency
response applies to real problems, and with the objective of enabling educated use of filter design
software. The modem startup sequence example is considered again in some detail, zeroing in on
detection of the answer tone to illustrate design tradeoffs.

The purpose of thislab (C.10) isto use frequency domain concepts to study amplitude modulation.
This is motivated, of course, by talking about AM radio, but also about digital communication
systems, including digital cellular telephones, voiceband data modems, and wireless networking
devices.

The students are given the following problem scenario:

Notes to Instructors XXili

Assume we have asignal that contains frequencies in the range of about 100 to 300 Hz,
and we have a channel that can pass frequencies from 700 to 1300 Hz. Thetask isto
modulate the first signal so that it lies entirely within the channel passband, and then to
demodulate to recover the original signal.

Thetest signal isachirp. The frequency humbers are chosen so that every signal involved, even the
demodulated signal with double frequency terms, is well within the audio range at an 8 kHz sample
rate. Thus, students can reinforce the visual spectral displays with sounds that illustrate clearly what
is happening.

A secondary purpose of thislab isto gain aworking (users) knowledge of the FFT algorithm. Infact,
they get enough information to be able to fully understand the algorithm that they were previously
given to compute discrete Fourier series coefficients.

In thislab, the students aso get an introductory working knowledge of filter design. They construct
a specification and afilter design for the filter that eliminates the double frequency terms. This lab
requires the Signal Processing Toolbox of Matlab for filter design.

Week 15 — Comprehensive Examples. This week develops applications that combine techniques
of the course. The precise topics depend on the interests and expertise of the instructors, but we
have specifically covered the following:

e Speech analysisand synthesis, using ahistorical Bell Labsrecording of the Voder and Vocoder
from 1939 and 1940 respectively, and explaining how the methods illustrated there (paramet-
ric modeling) are used in today’s digital cellular telephones.

¢ Digital audio, with emphasis on encoding techniques such as MP3. Psychoacoustic concepts
such as perceptual masking are related to the frequency domain ideas in the course.

¢ Vehicle automation, with emphasis on feedback control systems for automated highways. The
use of discrete magnets in the road and sensors on the vehicles provides a superb illustration
of the risks of aliasing.

The purpose of this lab (C.11) is to study the relationship between discrete-time and continuous-
time signals by examining sampling and aliasing. Of course, a computer cannot directly deal with
continuous-time signals. So instead, we construct discrete-time signals that are defined as samples
of continuous-time signals, and then operate entirely on them, downsampling them to get new sig-
nals with lower sample rates, and upsampling them to get signals with higher sample rates. The
upsampling operation is used to illustrate oversampling, as commonly used in digital audio players
such as compact disk players. Once again, the lab is carefully designed so that all phenomena can
be heard.

Discussion

Thefirst few times we offered this course, automata appeared after frequency domain concepts. The
new ordering, however, is far better. In particular, it introduces mathematical concepts gradually.

XXV Notes to Instructors

Specificaly, the mathematical concepts on which the course relies are, sets and functions, matrix
multiplication, complex numbers, and series and integrals. In particular, note that although students
need to be comfortable with matrix multiplication, most of linear algebrais not required. We never
mention an eigenvalue nor amatrix inverse, for example. The calculus required is also quite simple.
The few exercises in the text that require calculus provide any integration formulas that a student
might otherwise ook up. Although series figure prominently, we only lightly touch on convergence,
raising but not resolving the issue.

Some instructors may be tempted to omit the material on automata. We advise strongly against this.

First, it gets students used to formally characterizing signals and systems in the context of a much
simpler framework than linear systems. Most students find this material quite easy. Moreover,

the methods apply much more broadly than frequency domain analysis, which applies primarily

to LTI systems. Most systems are not LTI. Thus, inclusion of this material properly reflects the
breadth of electrical engineering, which includes such specialties as data networks, which have
little to with LTI systems. Even in specializations that heavily leverage frequency domain concepts,

such assignal processing and communications, practitioners find that a huge fraction of their design
effort dealswith control logic and software-based services. Regrettably, classically trained electrical

engineers harbor the misapprehension that these parts of their work are not compatible with rigor.

Thisiswrong.

Notation

The notation we use is somewhat unusual when compared to standard notation in the vast mgjority
of texts on signals and systems. However, we believe that the standard notation is serioudly flawed.
As acommunity, we have been able to get away with it for many years because signals and systems
dealt only with continuous-time LTI systems. But to be useful, the discipline must be much broader
now. Our specific complaints about the standard notation include:

Domains and Ranges

It is al too common to use the form of the argument of a function to define the function. For
example, x(n) is adiscrete-time signal, while x(¢) is a continuous-time signal. This leads to math-
ematical nonsense like the x(n) = x(nT') to define sampling. Similarly, many authors use w for
frequency in radians per second (unnormalized) and €2 for frequency in radians per sample (normal-
ized). This means that X () # X (w) even when Q = w. The same problem arises when using
theform X (jw) for the continuous-time Fourier transform and X (¢) for the discrete-time Fourier
transform. Worse, these latter forms are used specifically to establish the relationship to the Laplace
and Z transforms. So X (jw) = X (s) when s = jw, but X (jw) # X (¢/*) when /% = jw.

The intent in using the form of the argument is to indicate what the domain of the function is.
However, the form of the argument is not the best way to do this. Instead, we treat the domain of a
function as an integral part of its definition. Thus, for example, a discrete-time (real-valued) signal
is afunction z: Ints — Reals and it has a discrete-time Fourier transform that is also a function

Notes to Instructors XXV

X:Reals— Comps The DTFT itsdf is afunction whose domain and range are sets of functions
DTFT: [Ints — Real$ — [Reals— Comps.

Thus, we can write X = DTFT(z).

Functions as Values

Most texts call the expression z(¢) afunction. A better interpretation isthat x(¢) isan element in the
range of the function x. The difficulty with the former interpretation becomes obvious when talking
about systems. Many texts pay lip service to the notion that a system isafunction by introducing a
notation like y(t) = T'(x(t)). This makes no distinction between the value of the function at ¢ and
the function y itself.

Why does this matter? Consider our favorite type of system, an LTI system. We write y(t) =
x(t) * h(t) to indicate convolution. Under any reasonable interpretation of mathematics, this would
seem to imply that y(t — 7) = «(t — 7) x h(t — 7). But itisnot so! How is a student supposed to
conclude that y(t — 27) = x(t — 7) *« h(t — 7)? This sort of sloppy notation could easily undermine
the students' confidence in mathematics.

In our notation, afunction isthe element of aset of functions, just asits value for agiven element in
the domain is an element of its range. Convolution is afunction whose domain is the cross product
of two sets of functions. Continuous-time convolution, for example, is

Convolution : [Reals— Real$ x [Reals— Reals
— [Reals— Reals.

We then introduce the notation * as a shorthand,
x x y = Convolution(z, y),

and define the convolution function by

[e.o]

(%)() = / 2()y(t — 7)dr.

—0o0
Note the careful parenthesization.

A major advantage of our notation isthat it easily extends beyond LTI systemsto the sorts of systems
that inevitably arise in any real world application. For example, the events generated by the buttons
of an audio component are asignal given as afunction,

CommandsNats— {Rec Play, Stop FastFwd Rewind,

where Natsis the set of natural numbers. This is now a signal! With traditional notation, it is a
whole new animal.

XXVi Notes to Instructors

Names of Functions

We have chosen to use long names for functions and variables when they have a concrete interpre-
tation. Thus, instead of = we might use Sound This follows along-standing tradition in software,
where readability is considerably improved by long names. By giving us a much richer set of names
to use, this helps us avoid some of the pitfalls we cite above. For example, to define sampling of an
audio signal, we might write

SampledSouné- Sampley-(Sound.

It also helps bridge the gap between realizations of systems (which are often software) and their
mathematical models. How to manage and understand this gap is a major theme of our approach.

Structure and I nterpretation of
Signals and Systems

Chapter 1

Signals and Systems

Signals convey information. Systems transform signals. This book is about developing a deeper
understanding of both. We gain this understanding by dissecting their structure (their syntax) and by
examining their interpretation (their semantics). For systems, we look at the relationship between
the input and output signals (this relationship is a declarative description of the system) and the
procedure for converting an input signal into an output signal (this procedure is an imperative
description of the system).

A sound is a signal. We leave the physics of sound to texts on physics, and instead, show how
a sound can be usefully decomposed into components that themselves have meaning. A musical
chord, for example, can be decomposed into a set of notes. Animageisasigna. We do not discuss
the biophysics of visual perception, but instead show that an image can be usefully decomposed.
We can use such decomposition, for example, to examine what it means for an image to be sharp or
blurred, and thus to determine how to blur or sharpen an image.

Signals can be more abstract (less physical) than sound or images. They can be, for example, a
sequence of commands or a list of names. We develop models for such signals and the systems
that operate on them, such as a system that interprets a sequence of commands from amusician and
produces a sound.

One way to get a deeper understanding of a subject is to formalize it, to develop mathematical
models. Such models admit manipulation with alevel of confidence not achievable with less formal
models. We know that if we follow the rules of mathematics, then atransformed model still relates
strongly to the original model. There is a sense in which mathematical manipulation preserves
“truth” in away that is elusive with almost any other intellectual manipulation of a subject. We
can leverage this truth-preservation to gain confidence in the design of a system, to extract hidden
information from asignal, or simply to gain insight.

Mathematically, we model both signals and systems as functions. A signal is a function that maps
a domain, often time or space, into a range, often a physical measure such as air pressure or light
intensity. A system is a function that maps signals from its domain — its input signals — into
signalsin its range — its output signals. The domain and the range are both sets of signals (signal
spaces). Thus, systems are functions that operate on functions.

2 CHAPTER 1. SIGNALSAND SYSTEMS

We use the mathematical language of sets and functions to make our models unambiguous, precise,
and manipulable. This language has its own notation and rules, which are reviewed in appendix
A. Depending on the situation, we represent physical quantities such astime, voltage, current, light
intensity, air pressure, or the content of a memory location by variables that range over appropriate
sets. For example, discrete time may be represented by a variable n € Nats the natural numbers,
or n € Ints, the integers; continuous time may be represented by a variable t € Realsg, the non-

negative real numbers, or t € Reals the real numbers. Light intensity may be represented by a
continuous variable z € [0, I], arange of real numbers from zero to I, where I is some maximum
value of the intensity; avariable in alogic circuit may be represented as x € Bin, the binary digits.
A binary fileis an element of Bin*®, the set of sequences of binary digits. A computer name such as
cory. eecs. Ber kel ey. EDUmay be assigned to a variable in C'har*, the set of sequences of

characters.

1.1 Signals

Signals are functions that carry information, often in the form of temporal and spatial patterns.
These patterns may be embodied in different media; radio and broadcast TV signals are electro-
magnetic waves, and images are spatial patterns of light intensities of different colors. In digital
form, images and video are bit strings. Sensors of physical quantities (such as speed, temperature,
or pressure) often convert those quantities into electrical voltages, which are then often converted
into digital numbers for processing by a computer. In this text we will study systems that store,
manipulate, and transmit signals.

In this section we study signals that occur in human and machine perception, in radio and TV, in
telephone and computer networks, and in the description of physical quantities that change over time
or over space. The most common feature of these signals is that their domains are sets representing
time and space. However, we also study signals that are represented as sequences of symbols, where
position within the sequence has no particular association with the physical notions of time or space.
Such signals are often used to represent sequences of commands or sequences of events.

We will model signals as functions that map a domain (a set) into arange (another set). Our interest
for now is to understand through examples how to select the domain and range of signals and how
to visuaize them. To fully describe a signal, we need to specify not only its domain and range, but
a so the rules by which the function assigns values. Because the domain and range are often infinite
sets, specification of the rules is rarely trivial. Much of the emphasis of subsequent chapters is on
how to characterize these functions.

1.1.1 Audiosignals

Our ears are sensitive to sound, which is physically just rapid variations in air pressure. Thus sound
can be represented as a function

[SoundTime— Pressuré

11 SIGNALS 3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Time in seconds

Figure 1.1: Waveform of a speech fragment.

where Pressureis a set consisting of possible values of air pressure, and Timeis a set representing
the time interval over which the signal lasts*

Example 1.1: For example, a one-second segment of a voice signal is a function of
theform
Voice [0, 1] — Pressure

where [0, 1] represents one second of time. An example of such afunction is plotted in
figure 1.1. Such aplot is often called awaveform.

In figure 1.1, the vertical axis does not directly represent air pressure. Thisis obvious
because air pressure cannot be negative. In fact, the possible values of the function
Voiceas shown in figure 1.1 are 16-bit integers, suitable for storage in a computer. Let
us call the set of 16-bit integers Ints16 = {—32768, ...,32767}. The audio hardware of
the computer is responsible for converting members of the set Ints16into air pressure.

Notice aso that the signal in figure 1.1 varies over positive and negative values, av-
eraging approximately zero. But air pressure cannot be negative. It is customary to
normalize the representation of sound by removing (subtracting) the ambient air pres-
sure (about 100,000 newtons per square meter) from the range. Our ears, after al, are
not sensitive to constant ambient air pressure. Thus, we take Pressure= Reals the
real numbers, where negative pressure means a drop in pressure relative to ambient
air pressure. The numbers in the computer representation, Ints16, are a subset of the
Reals The units of air pressure in this representation are arbitrary, so to convert to
units of newtons per sguare meter, we would need to multiply these numbers by some
constant. The value of this constant depends on the audio hardware of the computer
and on its volume setting.

“For areview of the notation of sets and functions, see appendix A.

4 CHAPTER 1. SIGNALSAND SYSTEMS

x10

10 7

ol e Al

=y

-1.0[7]

'15 1 1 1 1 1 1 1
0.188 0.190 0.192 0.194 0.196 0.198 0.200

Time in seconds

Figure 1.2: Discrete-time representation of a speech fragment.

The horizontal axisin figure 1.1 suggests that time varies continuously from zero to 1.0. However,

a computer cannot directly handle such a continuum. The sound is represented not as a continuous
waveform, but rather as alist of numbers (for voice-quality audio, 8,000 numbers for every second
of speech).’ A close-up of a section of the speech waveform is shown in figure1.2. That plot shows

100 data points (called samples). For emphasis, that plot shows a dot for each sample rather than a
continuous curve, and a stem connecting the dot to the horizontal axis. Such aplot is called astem
plot. Since there are 8,000 samples per second, the 100 points in figure 1.2 represent 100/8,000

seconds, or 12.5 milliseconds of speech.

Such signals are said to be discrete-time signals because they are defined only at discrete pointsin
time. A discrete-time one-second voice signal in a computer is afunction

| ComputerVoiceDiscreteTime— Ints16|

where DiscreteTime= {0, 1/8000, 2/8000, . .. ,8000/8000} isthe set of sampling times.

By contrast, continuous-time signals are functions defined over a continuous interval of time (tech-
nically, a continuum in the set Reald. The audio hardware of the computer is responsible for con-
verting the ComputerVoicdunction into a function of the form Sound Time — Pressure That
hardware, which converts an input signal into a different output signal, is a system.

Example 1.2: The sound emitted by a precisely tuned and idealized 440 Hz tuning
fork over the infinite time interval Reals= (—oc, 0o) is the function

PureToneReals— Reals
where the time-to-(normalized) pressure assignment is
Vt e Reals PureTonét) = Psin(2m x 440t),

f1n acompact disc (CD), there are 44,100 numbers per second of sound per stereo channel.
#|f the notation here is unfamiliar, see appendix A.

11 SIGNALS 5

NN

time in milliseconds

[N

(&)

o

Figure 1.3: Portion of the graph of a pure tone with frequency 440 Hz.

Here, P isthe amplitude of the sinusoidal signal PureTone It isareal-valued constant.
Figure 1.3 isagraph of aportion of this pure tone (showing only a subset of the domain,
Real9. Inthefigure, P = 1.

The number 440 in this example is the frequency of the sinusoidal signal shown in figurel.3, in
units of cycles per second or Hertz, abbreviated Hz$ It simply asserts that the sinusoid com-
pletes 440 cycles per second. Alternatively, it completes one cycle in 1/440 seconds or about 2.3
milliseconds. The time to complete one cycle, 2.3 milliseconds, is called the period.

The Voicesigna in figure 1.1 is much more irregular than PureTonein figure 1.3. An important

theorem, which we will study in subsequent chapters, says that, despite its irregularity, a function
like Voiceis a sum of signals of the form of PureTone but with different frequencies. A sum of
two pure tones of frequencies, say 440 Hz and 660 Hz, is the function SumOfTonefkeals— Reals
given by

Vt e Reals SumOfTond$) = P sin(2m x 440t) 4+ Pa sin(27m x 660t)

Notice that summing two sighals amounts to adding the values of their functions at each point in the
domain. Of course, two signals can be added only if they have the same domain and range, and the
range must be such that addition is defined. The two components are shown in figurel.4. Notice
that at any point on the horizontal axis, the value of the sum is simply the addition of the values of
the two components.

1.1.2 Images

We see because the eyeis sensitive to impulses of light (photons). If theimageisagrayscale picture
onall x 8.5 inch sheet of paper, the picture is represented by afunction

Image [0, 11] x [0,8.5] — [0, Biaz], (1.1

$The unit of frequency called Hertz is named after physicist Heinrich Rudolf Hertz (1857-94), for his research in
electromagnetic waves.

CHAPTER 1. SIGNALSAND SYSTEMS

0 1 2 3 4 5 6 7 8
time in milliseconds

Figure 1.4: Sum of two pure tones, one at 440 Hz and the other at 660 Hz.

400

300 phase 1 - phase 2 |

200 phase 2 - neutral |

100

neutral

-100 -

-200

-300

_400 1 1 1 1 1 1 1 1
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

Figure 1.5: The voltages between the two hot wires and the neutral wire
and between the two hot wires in household electrical power in the U.S.

11 SIGNALS

Probing further: Household electrical power

In the U.S.,, household current is delivered on three wires, a neutral wire and two
hot wires. The voltage between either hot wire and the neutral wire is around 110
to 120 volts, RMS (root mean square). The voltage between the two hot wires is
around 220 to 240 volts, RMS. The higher voltage is used for appliances that need
more power, such as air conditioners. Here, we examine exactly how this works.

The voltage between the hot wires and the neutral wire is sinusoidal with a fre-
guency of 60 Hz. Thus, for one of the hot wires, it is afunction z: Reals— Reals
where the domain represents time and the range represents voltage, and

VteReals x(t) =170cos(60 x 27t).

This 60 Hertz sinusoidal waveform completes one cycle in a period of P = 1/60
seconds. Why is the amplitude 170, rather than 120? Because the 120 voltage is
RMS (root mean square). That is,

7 x2(t)dt
voltage; ;s = Jo #*(0)dt xp() :

the square root of the average of the sguare of the voltage. This evaluates to 120.

The voltage between the second hot wire and the neutral wire is a function
y: Reals— Realswhere

VteReals y(t)=—170cos(60 x 27t) = —x(t).

It is the negative of the other voltage at any time ¢. This sinusoidal signal is said
to have a phase shift of 180 degrees, or 7 radians, compared to the first sinusoid.
Equivaently, it is said to be 180 degrees out of phase.

We can now see how to get the higher voltage for power-hungry appliances. We
simply use the two hot wires rather than one hot wire and the neutral wire. The
voltage between the two hot wires is the difference, a function z: Reals— Reals
where

VteReals z(t)=uxz(t) —y(t) = 340 cos(60 x 27t).

This corresponds to 240 volts RMS. A plot is shown in figurel1.5.

The neutral wire should not be confused with the ground wire in a three-prong
plug. The ground wireisnot connected to electrical company facilities. The neutral
wireis. The ground wire is typically connected to the plumbing or some metallic
conductor that goes underground. It is a safety feature to allow current to flow into
the earth rather than, say, through a person.

8 CHAPTER 1. SIGNALSAND SYSTEMS

Figure 1.6: Grayscale image on the left, and its enlarged pixels on the right.

where B, isthe maximum grayscale value (O isblack and B, iswhite). Theset [0, 11] x [0, 8.5]
defines the space of the sheet of paper.y More generally, a grayscale image is afunction

‘Image VerticalSpacex HorizontalSpace— Intensity,

where Intensity= [black white] is the intensity range from black to white measured in some scale.
An exampleis shownin figure 1.6.

For a color picture, the reflected light is sometimes measured in terms of its RGB values (i.e. the
magnitudes of the red, green, and blue colors), and so a color picture is represented by afunction

Colorimage VerticalSpacex HorizontalSpace— Intensity.

The RGB values assigned by Colorimageat any point (z, y) in its domain is the triple (r, g, b) €
Intensity given by
(r,g,b) = Colorimagéz, y).

Different images will be represented by functions with different spatial domains (the size of the
image might be different), different ranges (we may consider a more or less detailed way of repre-

TAgain, see appendix A if this notation is unfamiliar.

11 SIGNALS 9

| red [_ .
Display : ColorMaplndexes — Intensity3 | green image display device

(specified as a colormap table) bl > (e.g. monitor)
—>

_—>
colormap index

Figure 1.7: In a computer representation of a color image that uses a col-
ormap, pixel values are elements of the set ColorMaplndexes. The function
Display converts these indexes to an RGB representation.

senting light intensity and color than grayscale or RGB values), and differences in the assignment
of color values to points in the domain.

Since a computer has finite memory and finite wordlength, an image is stored by discretizing both
the domain and the range. So, for example, your computer may represent an image by storing a
function of the form

ComputerImage: DiscreteVertical Space x DiscreteHorizontal Space — Ints8

where
DiscreteVerticalSpace = {1,2,---,300},
DiscreteHorizontalSpace = {1,2,---,200}, and
Ints8 = {0,1,---,255}.

It is customary to say that Computerlmage stores 300 x 200 pixels, where a pixel is an indi-
vidual picture element. The value of a pixel is Computerlmage(row, column) € Ints8 where
row € DiscreteéVertical Space, column € DiscreteHorizontal Space. In this example the range Ints8
has 256 elements, so in the computer these elements can be represented by an 8-bit word (hence the
name Ints8). An example of such an image is shown in figure 1.6, where the right-hand version of
the image is magnified to show the discretization implied by the individual pixels.

A computer could store a color image in one of two ways. One way isto represent it as afunction
Color Computer Image: DiscreteVertical Space x DiscreteHorizontal Space — Ints§ (1.2

so each pixel value is an element of {0,1,---,255}3. Such a pixel can be represented as three
8-bit words. A common method which saves memory is to use a colormap. Define the set
ColorMaplindexes = {0, - - -, 255}, together with a Display function,

Display: ColorMaplndexes — Intensity®. (1.3)

Display assigns to each element of ColorMaplndexes the three (r, g,b) color intensities. This is
depicted in the block diagram in figure1.7. Use of acolormap reduces the required memory to store
an image by afactor of three because each pixel can now be represented by a single 8-bit number.
But only 256 colors can be represented in any given image. The function Display is typically
represented in the computer as alookup table (see labC.2).

10 CHAPTER 1. SIGNALSAND SYSTEMS

0 130 2/30 3/30 .. n/30

FrameTimes

.............................

Figure 1.8: lllustration of the function Video.

1.1.3 Videosignals

A video is a sequence of images displayed at a certain rate. NTSC video (the standard for analog
video followed in the U.S.) displays 30 images (called frames) per second. Our eye is unable to
distinguish between successive images displayed at this frequency, and so a TV broadcast appears
to be continuously varying in time.

Thus the domain of a video signal is discrete time, FrameTimes = {0,1/30,2/30,---}, and its
range is a set of images, ImageSet. For analog video, each image in ImageSet is a function of the
form

\ideoFrame: DiscreteVertical Space x Horizontal Space — Intensity?.

An analog video signd is discretized in the vertical direction, but not in the horizontal direction!
Theimageis composed of aset of horizontal lines called scan lines, where theintensity varies along
the line. The horizonta lines are stacked vertically to form an image.

A video signal, therefore, is afunction
Video: FrameTimes — ImageSet. (1.9

For any time ¢ € FrameTimes, the image Video(t) € ImageSet is displayed. The signal Video is
illustrated in figure 1.8.

An dternative way of specifying a video signal is by the function AltVideo whose domain is a
product set as follows:

AltVideo: FrameTimes x DiscreteVertical Space x Horizontal Space — Intensity’.

IThis is actually somewhat of a simplification. Most analog video images are interlaced, meaning that successive
frames use different sets for DiscreteVerticalSpace so that scan lines in one frame lie between the scan lines of the
previous frame. Also, the range Intensity® has a curious structure that ensures compatibility between black-and-white
and color television sets.

11 SIGNALS 11

0 1/30 2/30 i .. N30 ..

red, green, blue values ——»

............

Figure 1.9: lllustration of the function AltVideo.

Similarly to figure 1.8, we can depict AltVideo asin figure 1.9. The RGB value assigned to a point
(z,y) attimetis
(r,g,b) = AltVideo(t, z, y). (1.5

If the signals specified in (1.4) and (1.5) represent the same video, then for all ¢ € FrameTimes and
(z,y) € DiscreteVertical Space x Horizontal Space,

(Mideo(t))(z,y) = AltVideo(t, =, y). (1.6)

It is worth pausing to understand the notation used in (L.6). Video is a function
of ¢, so Video(t) is an element in its range ImageSet. Since elements in ImageSet
themselves are functions, Video(t) is a function. The domain of Video(t) is the
product set DiscreteVertical Space x Horizontal Space, so (Mdeo(t))(x,y) is the
value of this function at the point (x,y) inits domain. This value is an element of
Intensity®. On the right-hand side of (1.6) AltVideo is afunction of (¢, z,y) and so
AltVideo(t,r,y) is an element in its range, Intensity®. The equality (1.6) asserts
that for all values of ¢, x, iy the two sides are the same. On the | eft-hand side of (L.6)
the parentheses enclosing Video(t) are not necessary; we could equally well write
Video(t)(x, y). However, the parentheses improve readability.

12 CHAPTER 1. SIGNALSAND SYSTEMS

1.1.4 Signalsrepresenting physical attributes

The change over timein the attributes of a physical object or device can be represented as functions
of time or space.

Example 1.3: The position of an airplane can be expressed as
Position: Time — Reals®,
wherefor al ¢ € Time,
Position(t) = (x(t),y(t), 2(t))

isitsposition in 3-dimensional space at timet. The position and velocity of the airplane
isafunction
PositionVelocity: Time — Reals’, (1.7

where
PositionVelocity(t) = (x(t), y(t), 2(t), vz (t), vy (t), v2(1)) (1.8)

givesits position and velocity at t € Time.

The position of the pendulum shown in the left panel of figure1.10 is represented by
the function
0:Time — [—m, 7,

where 0(t) is the angle with the vertical made by the pendulum at time ¢.

The position of the upper and lower arms of arobot depicted in the right panel of figure
1.10 can be represented by the function

(04, 0;): Time — [—m, 7T]2,

where 0,,(t) is the angle at the elbow made by the upper arm with the vertical, and
0,(t) is the angle made by the lower arm with the upper arm at time ¢. Note that we
can regard (6, 0;) as asingle function with range as the product set [, 7F or astwo
functions 6,, and ; each with range [, 7]. Similarly, we can regard PositionVelocity
in (1.7) as asingle function with range Real€’ or as a collection of six functions, each
with range Reals, as suggested by (1.8).

Example 1.4: The spatia variation of temperature over some volume of space can be
represented by afunction

AirTemp: X x Y x Z — Reals

where X x Y x Z C Reals’ isthe volume of interest, and AirTemp(z,y, z) is the
temperature at the point (z, y, z).

11 SIGNALS 13

Figure 1.10: Position of a pendulum (left) and upper and lower arms of a
robot (right).

1.15 Sequences

Above we studied examples in which temporal or spatial information is represented by functions of
a variable representing time or space. The domain of time or space may be continuous as in Voice
and Image or discrete as in ComputerVoice and Computer Image.

In many situations, information is represented as sequences of symbols rather than as functions of
time or space. These sequences occur in two ways: as arepresentation of data or as arepresentation
of an event stream.

Examples of data represented by sequences are common. A file stored in acomputer in binary form
is a sequence of bits, or binary symbals, i.e. a sequence of O'sand 1's. A text, like this book, is a
sequence of words. A sheet of music is a sequence of notes.

Example 1.5: Consider an N-bit long binary file,
b1, b2, -+, bn,
where each b; € Bin = {0, 1}. We can regard this file as afunction
File: {1,2,--- N} — Bin,

with the assignment File(n) = b, for every n € {1,---, N}.

If instead of Bin we take the range to be EnglishWbrds, then an N-word long English
text isafunction

EnglishText: {1,2,---, N} — EnglishWords.

In general, data sequences are functions of the form

‘ Data: Indices — Symbols,

(1.9)

14 CHAPTER 1. SIGNALSAND SYSTEMS

where Indices C Nats, where Nats is the set of natural numbers, is an appropriate index set such as
{1,2,---, N}, and Symbolsis an appropriate set of symbols such as Bin or EnglishWords.

One advantage of the representation (1.9) is that we can then interpret Data as a discrete-time
signal, and so some of the techniques that we will develop in later chapters for those signals will
automatically apply to data sequences. However, the domain Indices in (1.9) does not represent
uniformly spaced instances of time. All we can say isthat if m and n are in Indices with m < n,
then the m-th symbol Data(m) occurs in the data sequence before the n-th symbol Data(n), but we
cannot say how much time elapses between the occurrence of those two symbols.

The second way in which sequences arise is as representations of event streams. An event stream
or trace isarecord or log of the significant events that occur in a system of interest. Here are some
everyday examples.

Example 1.6: When you call someone by phone, the normal sequence of eventsis

LiftHandset, HearDial Tone, Dial Digits, Hear TelephoneRing, Hear CalleeAnswe, - - -
but if the other phone is busy, the event traceis
LiftHandset, Hear Dial Tone, Dial Digits, HearBusyTone, - - -
When you send afile to be printed the normal trace of eventsis
CommandPrintFile, FilePrinting, PrintingComplete
but if the printer has run out of paper, the trace might be

CommandPrintFile, FilePrinting, MessageOutofPaper, | nsertPaper, - - -

Example 1.7: When you enter your car the starting trace of events might be

SartEngine, SeatbeltSgnOnN, BuckleSeatbelt, SeatbeltSgnOff, - - -

Thus event streams are functions of the form

| EventStream: Indices — EventSet.|

We will see in chapter 3 that the behavior of finite state machines is best described in terms of
event traces, and that systems that operate on event streams are often best described as finite state
machines.

1.1.6 Discretesignalsand sampling

\oice and PureTone are said to be continuous-time signal's because their domain Time is acontinuous
interval of the form [«, 3] C Reals. The domain of Image, similarly, is a continuous 2-dimensional

11 SIGNALS 15

rectangle of the form [a, b] x [c, d] C Reals’. The signals Computer\oice and Computer|mage have
domains of time and space that are discrete sets. Video is also adiscrete-time signal, but in principle
it could be a function of a space continuum. We can define a function ComputerVideo where all
three sets that are composed to form the domain are discrete.

Discrete signals often arise from signals with continuous domains by sampling. We briefly motivate
sampling here, with a detailed discussion to be taken up later. Continuous domains have an infinite
number of elements. Even the domain [0,1] C Time representing a finite time interval has an
infinite number of elements. The signal assigns avalue in its range to each of these infinitely many
elements. Such a signal cannot be stored in a finite digital memory device such as a computer or
CD-ROM. If we wish to store, say, Voice, we must approximate it by asignal with afinite domain.

A common way to approximate a function with a continuous domain like Voice and Image by a
function with afinite domain is by uniformly sampling its continuous domain.

Example 1.8: If we sample a 10-second long domain of \oice,
Voice: [0, 10] — Pressure,
10,000 times a second (i.e. a afrequency of 10 kHz) we get the signal
Sampledvoice: {0,0.0001,0.0002, - - - ,9.9998,9.9999, 10} — Pressure, (1.10)
with the assignment
Sampled\voice(t) = Woice(t), for al ¢t € {0,0.0001,0.0002, - - -,9.9999,10}. (1.11)

Notice from (1.10) that uniform sampling means picking a uniformly spaced subset of
points of the continuous domain [0, 10].

In the example, the sampling interval or sampling period is 0.0001 sec, corresponding to a sam-
pling frequency or sampling rate of 10,000 Hz. Since the continuous domain is 10 seconds long,
the domain of SampledVoice has 100,000 points. A sampling frequency of 5,000 Hz would give the
domain {0, 0.0002, - - - ,9.9998, 10}, which has half as many points. The sampled domain is finite,
and its elements are discrete values of time.

Notice also from (1.11) that the pressure assigned by SampledVoice to each time in its domain is
the same as that assigned by \bice to the same time. That is, Sampled\oice is indeed obtained by
sampling the Voice signal at discrete values of time.

Figure 1.11 shows an exponential function Exp: [—1, 1] — Reals defined by
Exp(z) = €”.
SampledExp is obtained by sampling with a sampling interval of 0.2. So itsdomainis

{-1,-08,---,0.8,1.0}.

16 CHAPTER 1. SIGNALSAND SYSTEMS

3 3

251 q 251
(0]
2 2
0]
151 q 151 0]
(0]

1 1

0.5 q 0.5

I
1 -0.5 0 0.5 1

Figure 1.11: The exponential functions Exp and SampledExp, obtained by
sampling with a sampling interval of 0.2.

The continuous domain of Image given by (1.1), which describes agrayscale image on an 8.5 by 11
inch sheet of paper, istherectangle [0, 11] x [0, 8.5], representing the space of the page. In this case,
too, a common way to approximate Image by a signal with finite domain isto sample the rectangle.
Uniform sampling with a spatial resolution of say, 100 dots per inch, in each dimension, gives the
finite domain D = {0,0.01, - - -,8.49,8.5} x {0,0.01,---,10.99,11.0}. So the sampled grayscale
pictureis

Sampledimage: D — [0, Byaz)

with
Sampledimage(z, y) = Image(z, y), for al (z,y) € D.

As mentioned before, each sample of the image is called a pixel, and the size of the image is often
given in pixels. The size of your computer screen display, for example, may be 600 x 800 or
768 x 1024 pixels.

Sampling and approximation

Let f be a continuous-time function, and let Sampledf be the discrete-time function obtained by
sampling f. Suppose we are given Sampledf, as, for example, in the left panel of figurel.12. Can
we reconstruct or recover f from Sampledf ? This question lies at the heart of digital storage and
communication technologies. The general answer to this question tells us, for example, what audio
guality we can obtain from a given discrete representation of a sound. The format for a compact
disc is based on the answer to this question. We will discuss it in much detail in later chapters.

11 SIGNALS 17

3 3 3
251 b 25 1 251
2 2r 2

(0]
15F b 15 1 15F
0]
1 ir 1
0.51 1 0.5F 1 0.5

Figure 1.12: The discrete-time signal on the left is obtained by sampling the
continuous-time signal in the middle or the one on the right.

For the moment, let us note that the short answer to the question aboveisno. For example, we cannot
tell whether the discrete-time function in the left panel of figurel.12 was obtained by sampling the
continuous-time function in the middle panel or the function in the right panel. Indeed there are
infinitely many such functions, and one must make a choice. One option is to connect the sampled
values by straight line segments, as shown in the middle panel. Another choice is shown in the right
panel. The choice made by your CD player is different from both of these, as explored further in
chapter 10.

Similarly, animage like Image cannot be uniquely recovered from its sampled version Sampledlmage.
Severad different choices are commonly used.

Digital signals and quantization

Even though Sampled\oice in example 1.8 has afinite domain, we may yet be unable to storeitina
finite amount of memory. To see why, suppose that the range Pressure of the function Sampledvoice
is the continuous interval [a,b]. To represent every value in [a, b] requires infinite precision. In a
computer, where data are represented digitally as finite collections of bits, such precision would
require an infinite number of bits for just one sample. But a finite digital memory has a finite
wordlength in which we can store only afinite number of values. For instance, if aword is 8 bits
long, it can have 2° = 256 different values. So we must approximate each number in the range
[a, b] by one of 256 values. The most common approximation method is to quantize the signal. A
common approach is to choose 256 uniformly-spaced values in the range [a, b], and to approximate

18 CHAPTER 1. SIGNALSAND SYSTEMS

l A

0.8 4

0.6 4

0.4 q

0.2 X q
ok 4

-0.6F N

-0.8} N

Figure 1.13: PureTone (continuous curve), SampledPureTone (circles), and
DigitalPureTone signals (X’s).

each value in [a, b] by the one of these 256 values that is closest. An alternative approximation,
called truncation, is to choose the largest of the 256 values that is less than or equal to the desired
value.

Example 1.9: Figure 1.13 shows a PureTone signal, SampledPureTone obtained after
sampling, and a quantized Digital PureTone obtained using 4-bit or 16-level truncation.
PureTone has continuous domain and continuous range, while SampledPureTone (de-
picted with circles) has discrete domain and continuous range, and DigitalPureTone
(depicted with x’s) has discrete domain and discrete range. Only the last of these can
be precisely represented on a computer.

It is customary to call a signal with continuous domain and continuous range like PureTone an
analog signal, and asignal with discrete domain and range, like DigitalPureTone, adigital signal.

Example1.10: Indigital telephones, voice is sampled every 125.sec, or at asampling
frequency of 8,000 Hz. Each sampleis quantized into an 8-bit word, or 256 levels. This
gives an overall rate of 8,000 x 8 = 64,000 bits per second. The worldwide digital
telephony network, therefore, is composed primarily of channels capable of carrying
64,000 bits per second, or multiples of this (so that multiple telephone channels can be
carried together). In cellular phones, voice samples are further compressed to bit rates
of 8,000 to 32,000 bits per second.

12 SYSTEMS 19

1.2 Systems

Systems are functions that transform signals. There are many reasons for transforming signals. A
signal carriesinformation. A transformed signal may carry the same information in a different way.
For example, in a live concert, music is represented as sound. A recording system may convert
that sound into a pattern of magnetic fields on a magnetic tape. The original signal, the sound, is
difficult to preserve for posterity. The magnetic tape has a more persistent representation of the
same information. Thus, storage is one of the tasks accomplished by systems.

A system may transform a signal into a form that is more convenient for transmission. Sound
signals cannot be carried by the Internet. There is simply no physical mechanism in the Internet
for transporting rapid variations in air pressure. The Internet provides instead a mechanism for
transporting sequences of bits. A system must convert a sound signal into a sequence of bits. Such
asystem is called an encoder or coder. At the far end, of course, a decoder is needed to convert
the sequence back into sound. When a coder and a decoder are combined into the same physical
device, the device is often called a codec.

A system may transform asignal to hide its information so that snoops do not have accessto it. This
is called encryption. To be useful, we need matching decryption.

A system may enhance asignal by emphasizing some of the information it carries and deempha-
sizing some other information. For example, an audio equalizer may compensate for poor room
acoustics by reducing the magnitude of certain low frequencies that happen to resonate in the room.
In transmission, signals are often degraded by noise or distorted by physical effectsin the transmis-
sion medium. A system may attempt to reduce the noise or reverse the distortion. When the signal
iscarrying digital information over aphysical channel, the extraction of the digital information from
the degraded signal is called detection.

Systems are also designed to control physical processes such asthe heating in aroom, theignitionin
an automobile engine, the flight of an aircraft. The state of the physical process (room temperature,
cylinder pressure, aircraft speed) is sensed. The sensed signal is processed to generate signals that
drive actuators, such as motors or switches. Engineers design a system called the controller which,
on the basis of the processed sensor signal, determines the signals that control the physical process
(turn the heater on or off, adjust the ignition timing, change the aircraft flaps) so that the process has
the desired behavior (room temperature adjusts to the desired setting, engine delivers more torque,
aircraft descends smoothly).

Systems are also designed for trandation from one format to another. For example, a command
sequence from a musician may be transformed into musical sounds. Or the detection of risk of
collision in an aircraft might be translated into control signals that perform evasive maneuvers.

121 Systemsasfunctions

Consider a system S that transforms input signal z into output signal y. The system is a function,
0y = S(z). Suppose z: D — R isasignal with domain D and range R. For example, might be

20 CHAPTER 1. SIGNALSAND SYSTEMS

asound, z: Reals — Pressure. The domain of S isthe set X of all such sounds, which we write

|X=[D— R]={z|x:D— R} (1.12)

This notation reads “ X, also written [D — R}, is the set of al x such that = is a function from D
to R Thisset iscaled asignal space or function space. A signal or function space is a set of all
functions with a given domain and range.

Example 1.11: The set of all sound segments with duration [0,1] and range Pressure
iswritten
[[0,1] — Pressure].

Notice that square brackets are used for both a range of reals, asin [0, 1], and for a
function space, asin [D — R], athough obviously the meanings of these two notations
are very different.

The set ImageSet considered in section 1.1.3 is the function space
ImageSet = [DiscreteVertical Space x Horizontal Space — Intensity?].

Since thisis a set, we can define functions that use it as a domain or range, as we have
done above with

Video: FrameTimes — ImageSet.

Similarly, the set of al binary files of length NV is
BinaryFiles = [Indices — Bin].

where Indices = {1,---, N}.

A system S is afunction mapping a signal space into asignal space,

S:[D — R]— [D' — R].

Systems, therefore, are much like signals, except that their domain and range are both signal spaces.
Thus, if z € [D — R] andy = S(z), then it must bethat y € [D' — R'].

1.2.2 Telecommunications systems

We give some examples of systems that occur in or interact with the global telecommunications net-
work. This network is unquestionably one of the most remarkable accomplishments of humankind.
It is astonishingly complex, composed of hundreds of distinct corporations and linking billions of
people. We often think of it in terms of its basic service, POTS, or plain-old telephone service.
POTS is a voice service, but the telephone network is in fact a global, high-speed digital network
that carries not just voice, but also video, images, and computer data, including much of the traffic
in the Internet.

12 SYSTEMS

Y

7
/
/
/
7
/
/
/
/
i
/
/
!
:
H
H
H
H
|
H
H
H
H
{
4
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\,
.
\

“,
‘ ‘ ‘ ‘ ‘ ‘ ‘ [11
2
The global Satgffite dish Line Card
telecommunications
network
Microwave Tower [
i
RSN Optical Fiber
4 _/_
Cabl
A ape PubHc Switch

Computer Modem
Large Business Customer

T1 line

Telephone

Home Customer

Voiceband Data
Modem Computer

Home Customer

ISDN ’
Modem Telephone

Small Business/Home

(!l
[l
PBX

DSL
Modem

Telephone

Small Business/Home

21

Figure 1.14: A portion of the global telecommunications network.

22 CHAPTER 1. SIGNALSAND SYSTEMS

) voice-like signal
U

Telephone

voice-like signal I/,

Telephone

POTS

Figure 1.15: Abstraction of plain-old telephone service (POTS).

Figure 1.14 depicts a small portion of the global telecommunications network. POTS service is
represented at the upper right, where a twisted pair of copper wires connects a central office to
a home telephone. This twisted pair is called the local loop or subscriber line. At the centra
office, the twisted pair is connected to a line card, which usualy converts the signal from the
telephone immediately into digital form. The line card, in turn, is connected to a switch, which
routes incoming and outgoing telephone connections. The Berkeley central office is located on
Bancroft, between Oxford and Shattuck.

The digital representation of a voice signal, a sequence of hits, is routed through the telephone
network. Usually it is combined with other bit sequences, which are other voices or computer data,
and sent over high-speed links implemented with optical fiber, microwave radio, coaxial cable, or
satellites.

Of course, atelephone conversation usually involves two parties, so the network deliversto the same
line card adigital sequence representing the far-end speaker. That digital sequence is decoded and
delivered to the telephone via the twisted pair. The line card, therefore, includes a codec.

The telephone itself, of course, is asystem. It transforms the electrical signal that propagates down
the twisted pair into a sound signal, and transforms alocal sound signal into an electrical signal that
can propagate down the twisted pair.

POTS can be abstracted as shown in figure 1.15. The entire network is reduced to a model that
accepts an electrical representation of a voice signal and transports it to a remote telephone. In this
abstraction, the digital nature of the telephone network isirrelevant. The system simply transports
(and degrades somewhat) a voice signal.

DTMF

Even in POTS, not al of the information transported is voice. At a minimum, the telephone needs
to be able to convey to the central office a telephone number in order to establish a connection. A
telephone number is not a voice signal. It isintrinsically discrete. Since the system is designed
to carry voice signals, one option is to convert the telephone number into a voice-like signal. A
system is needed with the structure shown in figure1.16. The block labeled “DTMF’ is a system
that transforms a sequence of numbers (coming from the keypad on the left) into avoice-like signal.

12 SYSTEMS

Probing further: Wirelesscommunication

Recently, the telephone network has been freeing itself of its dependence on wires.
Cellular telephones, which came into widespread use in the 1990s, use radio
waves to connect a small, hand-held telephone to a nearby base station. The base
station connects directly to the telephone network.

There are three magjor challenges in the design of cellular networks. First, radio
spectrum is scarce. Frequencies are alocated by regulatory bodies, often con-
strained by international treaties. Finding frequencies for new technologies is diffi-
cult. Thus, wireless communication devices have to be extremely efficient in their
use the available frequencies. Second, the power available to drive a cellular phone
islimited. Cellular phones must operate for reasonably long periods of time using
only small batteries that fit easily within the handset. Although battery technology
has been improving, the power that these batteries can deliver severely limits the
range of a cellular phone (how far it can be from a base station) and the processing
complexity (the microprocessors in a cellular phone consume considerable power).
Third, networking is complicated. In order to be able to route telephone calls to a
cellular phone, the network needs to know where the phoneis (or more specifically,
which base station is closest). Moreover, the network needs to support phone calls
in moving vehicles, which implies that a phone may move out of range of one base
station and into the range of another during the course of a telephone call. The
network must hand off the call seamlessly.

Although “radio telephones’ have existed for along time, particularly for maritime
applications where wireline telephony is impossible, it was the cellular concept
that made it possible to offer radio telephony to large numbers of users. The con-
cept is simple. Radio waves propagating along the surface of the earth lose power
approximately proportionally to the inverse of the fourth power of distance. That
is, if at distance d meters from a transmitter your receive w watts of radio power,
then at distance 2d you will receive approximately w/2' = w/16 watts of radio
power. This fourth-power propagation loss was traditionally considered only to be
a hindrance to wireless communication. It had to be overcome by greatly boosting
the transmitted power. The cellular concept turns this hindrance into an advantage.
It observes that since the loss is so high, beyond a certain distance the same fre-
guencies can be re-used without significant interference. Thus, the service areais
divided into cells. A second benefit of the cellular concept is that, at least in urban
areas, a cellular phone is never far from a base station. Thus, it does not need to
transmit a high-power radio signal to reach a base station. This makes it possible
to operate on asmall battery.

23

24

CHAPTER 1. SIGNALSAND SYSTEMS

Probing further: LEO telephony

Idedlly, a cellular phone, with its one phone number, could be called anywhere in
the world, wherever it happens to be, without the caller needing to know whereitis.
Unfortunately, the technological and organizational infrastructure is not quite there
yet. When a phone “roams’ out of its primary service area, it has to negotiate with
the service provider in anew areafor service. That service may be incomplete, for
example allowing outgoing but not incoming calls. Charges may be exorbitant, and
technical glitches may prevent smooth operation.

One candidate technology for solving these problems is a suite of global telephony
services based on low-earth-orbit (L EO) satellites. One such project isthe Iridium
project, spearheaded by Motorola, and so named because in the initial conception,
there would be 77 satellites. The iridium atom has 77 electrons. The idea is that
enough satellites are put into orbit that one is aways near enough to communicate
with a hand-held telephone. When the orbit is low enough that a hand-held tele-
phone can reach the satellite (a few hundred kilometers above the surface of the
earth), the satellites move by fairly quickly. As a consequence, during the course
of a telephone conversation, the connection may have to be handed off from one
satellite to another. In addition, in order to be able to serve enough users simultane-
oudly, each satellite has to re-use frequencies according to the cellular concept. To
do that, it focuses multiple beams on the surface of the earth using multi-element
antenna arrays.

There is some debate about whether this approach is economically viable. Thein-
vestment already has been huge, with at least one high-profile bankruptcy already,
so the risks are high. Better networking of terrestrial cellular services may provide
formidable competition. The LEO approach, however, has one advantage that ter-
restrial services cannot hope to match anytime soon: truly worldwide service. The
satellites provide service essentially everywhere, even in remote wilderness areas
and at sea.

12 SYSTEMS

697 Hz.

770 Hz.

852 Hz.

941 Hz.

25

N N N

I = T

(2] [{e] N~

o (a2} N~

N ™ <

— — —

1 2 3

voice-like
4 5 6 numbers signal
> DTMF —

7 8 9

* 0 #

Figure 1.16: DTMF converts numbers from a keypad into a voice-like signal.

2
0

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

time in seconds

Figure 1.17: Waveform representing the “0” key in DTMF.

26 CHAPTER 1. SIGNALSAND SYSTEMS

bit sequence ice-li
voice-like
» modulator ;
signal
bit sequence voice-like
< demodulator |« :
signal
modem telephone
network
bit sequence i
voice-like
» modulator :
signal
bit sequence voice-like
< demodulator |« i
signal

modem

Figure 1.18: Voiceband data modems.

The DTMF standard — dual-tone, multi-frequency — provides precisely such a mechanism. As
indicated at the left in the figure, when the customer pushes one of the buttons on the telephone
keypad, a sound is generated that is the sum of two sinusoidal signals. The frequencies of the two
sinusoids are given by the row and column of the key. Thus, for example, a“0” is represented as
a sum of two sinusoids with frequencies 941 Hz and 1336 Hz. The waveform for such a sound is
shown in figure 1.17. The line card in the central office measures these frequencies to determine
which digit was dialed.

M odems

Because POTS is ubiquitous, it is attractive to find a way for it to carry computer data. Like the
numbers on a keypad, computer dataisintrinsically discrete. Computer data are represented by bit
sequences, which are functions of the form

‘ BitSequence: Indices — Bin,

where Indices C Nats, the natural numbers, and Bin = {0, 1}. Like keypad numbers, in order for a
bit sequence to traverse a POTS phone ling, it has to be transformed into something that resembles a
voice signal. Further, asystem is needed to transform the voice-like signal back into a bit sequence.
A system that does that is called a voiceband data modem, shown just below the upper right in
figure 1.14. The word modem is a contraction of modulator, demodulator. A typica arrangement
isshown in figure 1.18.

12 SYSTEMS 27

The voice-like signal created by modern modems does not sound like the discrete tones of DTMF,
but rather sounds more like hiss. Thisis adirect consequence of the fact that modern modems carry
much more data per second than DTMF can (up to 54,000 bits per second rather than just a few
digits per second).

Most line cards involved in POTS service convert the voice signal into adigital bit stream at the rate
of 64,000 bits per second. This bit stream is then transported by the digital network. A voiceband
data modem gains access to the digital network rather indirectly, by first constructing a voice-like
signal to send to the line card. This gives the voiceband data modem the universality that it has.
It works anywhere because the telephone network is designed to carry voice, and it is making the
digital data masquerade as voice. It would be nice to get more direct access to the digital network.

Digital networks

Thefirst widely available service that gave direct access to the global digital telephone network was
| SDN — integrated services digital network. The ISDN service required that adifferent line card be
installed at the central office; it was therefore not as universally available as POTS. In fact, it took
nearly 10 yearsin the U.S. for ISDN become widely installed after it was developed in the early
1980s.

The configuration for ISDN is shown below the voiceband data modem in figurel.14. It requires a
special modem on the customer side as well as a special line card in the central office. ISDN typi-
cally provides two channels at rates of 64,000 bits per second plus athird control channel with arate
of 16,000 bits per second. One of the 64 kbps channels can be used for voice while simultaneously
the other two channels are used for data.

A more modern service is DSL — digital subscriber line. As shown at the lower right in figure
1.14, the configuration is similar to ISDN. Specialized modems and line cards are required. ADSL,
asymmetric DSL, is a variant that provides an asymmetric bit rate, with a much higher rate in the
direction from the central office to the customer than from the customer to the central office. This
asymmetry recognizes the reality of most Internet applications, where relatively little data flows
from the client, and torrents of data (including images and video) flow from the server.

Modems are used for many other channels besides the voiceband channel. Digital transmission
over radio, for example, requires that the bit sequence be transformed into a radio signal that con-
forms with regulatory constraints on that radio channel. Digital transmission over electrical cable
requires transforming the bit sequence into aform that propagates well over such cable and that does
not radiate too much radio-frequency interference. Digital transmission over optical fiber requires
transforming the bit sequence into alight signal, usually with the intensity being modulated at very
high rates. At each stage in the telephone network, therefore, a voice signal has adifferent physical
form with properties that are well suited to the medium through which the signal propagates. For
example, voice, which in the form of sound only travels well over the short distances, is converted
to an electrical signal that carries well over copper wiresfor the few kilometers. Copper wires, how-
ever, are not as well matched for long distances as optical fiber. Most long distance communication
channels today use optical fiber, although satellites still have certain advantages.

28

CHAPTER 1. SIGNALSAND SYSTEMS

Probing further: Encrypted speech

Pairs of modems are used at opposite ends of a telephone connection, each with a
transmitter and areceiver to achieve bidirectional (called full duplex) communica
tion. Once such modems are in place, and once they have been connected via the
telephone network, then they function as a bidirectional “bit pipe.” That bit pipeis
then usable by other systems, such as your computer.

One of the strangest uses is to transmit digitally represented and encrypted voice
signals. Hereis adepiction of thisrelatively complicated arrangement:

voice-like
voice signal bit sequence bit sequence signal
——— > encoder » encryption » modulator
A
e telephone
network
voice signal bit sequence bit sequence
decoder [« decryption [« demodulator 3
voice-like
signal

What is actually sent through the telephone network sounds like hiss, which by
itself provides a modicum of privacy. Casua eavesdroppers will be unable to un-
derstand the encoded speech. However, this configuration also provides protection
against sophisticated listeners. A listener that is able to extract the bit sequence
from this sound will still not be able to reconstruct the voice signal because the bit
sequence is encrypted.

Only one end is shown. The encoder and decoder, which convert voice signals to
and from bit sequences, are fairly sophisticated systems, as are the encryption and
decryption systems. The fact that such an approach is cost effective has more to do
with economics and sociology than technology.

12 SYSTEMS 29

Signal degradation

A voice received via the telephone network is different from the original in several respects. These
differences can be modeled by a system that degrades the voice signal.

Firgt, thereisaloss of information because of sampling and quantization in the encoder, as discussed
in the section 1.1.6. Moreover, the media that carry the signal, such as the twisted pair, are not
perfect. They distort the signal. One cause of distortion is addition of noise to the signal. Noise, by
definition, is any undesired component in the signal. Noise in the telephone network is sometimes
audible as background hiss, or as crosstalk, i.e., leakage from other telephone channels into your
own. Another degradation is that the medium attenuates the signal, and this attenuation depends on
the signal frequency. Theline card, in particular, usually contains abandlimiting filter that discards
the high frequency components of the signal. Thisiswhy telephone channels do not transport music
well. Finaly, the signal propagates over a physical medium at a finite speed, bounded by the speed
of light, and so there is a delay between the time you say something and the time when the person
at the other end hears what you say. Light travels through 1 km of optical fiber in approximately 5
1S, so the 5,000 km between Berkeley and New York causes a delay of about 25 ms, which is not
easily perceptible.*

Communications engineering is concerned with how to minimize the degradation for all kinds of
communication systems, including radio, TV, cellular phones, and computer networks (such as the
Internet).

1.2.3 Audio storage and retrieval

We have seen how audio signals can be represented as sequences of numbers. Digital audio storage
and retrieval is all about finding a physical and persistent representation for these numbers. These
numbers can be converted into a single sequence of hits (binary digits) and then “printed” onto
some physical medium from which they can later be read back. The transformation of sound into
its persistent representation can be modeled as a system, as can the reverse or playback process.

Example 1.12; Inthe case of compact discs (CDs), the physical medium is alayer of
aluminum on a platter into which tiny pits are etched. In the playback device, alaser
aimed at the platter uses an interference pattern to determine whether or not a pit exists
a a particular point in the platter. These pits, thus, naturaly represent binary digits,
since they can have two states (present or not present).

While avoiceband data modem converts bit sequences into voice-like signals, amusical
recording studio does the reverse, creating a representation of the sound that is a bit

** A phone conversation relayed by satellite has amuch larger delay. Most satellites traditionally used in the telecom-
munications network are geosynchronous, meaning that they hover at the same point over the surface of the earth. To do
that, they have to orbit at a height of 22,300 miles or 35,900 kilometers. It takes aradio signal about 120 msto traverse
that distance; since asignal hasto go up and back, there is an end-to-end delay of at least 240 ms (not counting delaysin
the electronics). If you are using this channel for atelephone conversation, then the round-trip delay from when you say
something to when you get areaction isa minimum of 480 ms. This delay can be quite annoying, impeding your ability
to converse until you got used to it. If you use Internet telephony, the delays are even larger, and they can be irregular
depending upon how congested the Internet is when you call.

30 CHAPTER 1. SIGNALSAND SYSTEMS

sequence,
RecordingSudio: Sounds — BitStreams.

There is a great deal of engineering in the details, however. For instance, CDs are
vulnerable to surface defects, which may arise in manufacturing or in the hands of
the user. These defects may obscure some of the pits, or fool the reading laser into
detecting a pit where thereis none. To guard against this, avery clever error-correcting
code called a Reed-Solomon code is used. The coding process can be viewed as a
function

Encoding: BitStreams — RedundantBitStreams.

where RedundantBitSreams C BitSreams is the set of all possible encoded bit se-
guences. These bit sequences are redundant, in that they contain more bits than are
necessary to represent the original bit sequence. The extra bits are used to detect er-
rors, and (sometimes) to correct them. Of course, if the surface of the CD istoo badly
damaged, even this clever scheme fails, and the audio data will not be recoverable.

CDs dso contain meta data, which is extra information about the audio signal. This
information allows the CD player to identify the start of a musical number and its
length, and sometimes the title and the artist.

The CD format can also be used to contain purely digital data. Such aCD is caled a
CD ROM (read-only memory). It is called this because, like a computer memory;, it
contains digital information. But unlike a computer memory, that information cannot
be modified.

DVD (digital video discs) take this concept much further, including much more meta
data. They may eventually replace CDs. They are entirely compatible, in that they can
contain exactly the same audio data that aCD can. DVD players can play CDs, but not
the reverse, however. DVDs can also contain digital video information and, in fact, any
other digital data. DAT (digital audio tape) is also a competitor to CDs, but has failed
to capture much of a market.

1.2.4 Modem negotiation

A very different kind of system is the one that manages the establishment of a connection between
two voiceband data modems. These two modems are at physicaly different locations, are proba-
bly manufactured by different manufacturers, and possibly use different communication standards.
Both modems convert bit streams to and from voice-like signals, but other than that, they do not
have much in common.

When a connection is established through the telephone network, the answering modem emits a
tone that announces “I am a modem.” The initiating modem listens for this tone, and if it fails to
detect it, assumes that no connection can be established and hangs up. If it does detect the tone, then
it answers with a voice-like signal that announces “| am a modem that can communicate according
to ITU standard =,” where z is one of the many modem standard published by the International
Telecommunication Union, or I TU.

12 SYSTEMS 31

The answering modem may or may not recognize the signal from the initiating modem. The initi-
ating modem, for example, may be a newer modem using a standard that was established after the
answering modem was manufactured. If the answering modem does recognize the signal, then it re-
sponds with asignal that says*“good, | too can communication using standard z, so let’s get started.”
Otherwise, it remains silent. The initiating modem, if it fails to get a response, tries another signal,
announcing “1 am a modem that can communicate according to ITU standard y,” where y is typi-
cally now an older (and slower) standard. This process continues until the two modems agree on a
standard.

Once agreement is reached, the modems need to make measurements of the telephone channel to
compensate for its distortion. They do this by sending each other pre-agreed signals called training
signals, defined by the standard. The training signa is distorted by the channel, and, since the
receiving modem knows the signal, it can measure the distortion. It uses this measurement to set up
adevice called an adaptive equalizer. Once both modems have completed their setup, they begin
to send data to one another.

As systems go, modem negotiation is fairly complex. It involves both event sequences and voice-
like signals. The voice like signals need to be analyzed in fairly sophisticated ways, sometimes
producing events in the event sequences. It will take this entire book to analyze all parts of this
system. The handling of the event sequences will be treated using finite state machines, and the
handling of the voice-like signals will be treated using frequency-domain concepts and filtering.

1.2.5 Feedback control system

Feedback control systems are composite systems where a plant, the nature of which we have little
control over, is fed a control signal. A plant may be a mechanical device, such as the power train
of acar, or achemica process, or an aircraft with certain inertial and aerodynamic properties, for
example. Sensors attached to the plant produce signalsthat are fed to the controller, which then gen-
erates the control signal. This arrangement, where the plant feeds the controller and the controller
feeds the plant, is a complicated sort of composite system called afeedback control system. It has
extremely interesting properties which we will explore in much more depth in subsegquent chapters.

In this chapter, we construct a model of a feedback control system using the syntax of block di-
agrams. Each system model consists of several interconnected components. We will identify the
input and output signals of each component and how the components are interconnected, and we
will argue on the basis of a common-sense physics how the overall system will behave. In later
chapters we consider mathematical specifications of these component systems from which we can
mathematically analyze the system behavior.

Example 1.13: Consider aforced air heating system, which heats aroom in ahome or
office to a desired temperature. Our first task is to identify the individual components
of the heating system. These are

e a furnace/blower unit (which we will ssmply call the heater) that heats air and
blows the hot air through vents into aroom,

e atemperature sensor that measures the temperature in aroom, and

CHAPTER 1. SIGNALSAND SYSTEMS

y l OutsideTemp

DesiredTemp OnOff Heat RoomTemp
X—) Controller —u) Heater —v) Room > >»
SensedTemp
m Sensor |« -
ForcedHeat

Figure 1.19: The interconnected components of a forced air heating system.

e thecontrol system that compares the specified desired temperature with the sensed
temperature and turns the furnace/blower unit on or off depending on whether the
sensed temperature is below or above the demanded temperature.

The interconnection of these components is shown in figure1.19.

Our second task is to specify the input and output signals of each component (the
domain and range of the function), ensuring the input-output matching conditions. The
heater produces hot air depending on whether it is turned on or off. Soitsinput signa
issimply afunction of time which takes one of two values, On or Off. We call input to
the heater (asignal) OnOff,

OnOff: Time — {On, Off },
and we take Time = Reals, , the non-negative reals. So the input signal spaceis
OnOffProfiles = [Reals; — {On, Off }].

(Recall that the notation [D — R)] defines a function space, as explained in section
1.2.1.) When the heater is turned on it produces heat at some rate that depends on the
capacity of the furnace and blower. We measure this heating rate in BTUs per hour. So
the output signal of the heater, which we name Heat is of the form

Heat: Reals; — {0, B.},

where B, isthe heating capacity measured in BTU/hour. If we name the output signal
space HeatProfiles, then

HeatProfiles = [Reals, — {0, B.}].
Thus the Heater system is described by afunction
Heater : OnOffProfiles — HeatProfiles. (1.13)

12 SYSTEMS 33

Common-sense physics tells us that when the heater is turned on the room will begin to
warm up and when the heater isturned off the room temperature will fall until it reaches
the outside temperature. So the room temperature depends on both the heat delivered
by the heater and the outside temperature. Thus the input signal to the room is the pair
(Heat, OutsideTemp). We can take OutsideTemp to be of the form

OutsideTemp: Reals; — [min, max],

where [min, max| is the range of possible outside temperatures, measured in degrees
Celsius, say. Theoutput signal of theroom is of course the room temperature, RoomTemp: Reals. —
[min, max]. If we denote

OutsideTempProfiles = [Reals; — [min, max]],

and
RoomTempProfiles = [Reals; — [min, max|],

then the behavior of the Room system is described by afunction
Room: HeatProfiles x OutsideTempProfiles — RoomTempProfiles (1.14)
In asimilar manner, the Sensor system is described by afunction
Sensor : RoomTempProfiles — SensedTempProfiles (1.15)
with input signal space RoomTempProfiles and output signal space

SensedTempProfiles = [Reals, — [min, max]].

The Controller isdescribed by the function
Controller: DesiredTempProfile x SensedTempProfile — OnOffProfile, (1.16)

where
DesiredTempProfiles = [Reals; — [min, max]].

We have constructed a model where the input-output matching condition is satisfied
everywhere.

The overall forced air heating system (the shaded part of figure1.19) has a pair of
input signal's, desired temperature and outside temperature, and one output signal, room
temperature. So it is described by the function

ForcedHeat: DesiredTempProfiles x OutsideTempProfiles — RoomTempProfiles.

If we are given the input signal values = of desired temperature and the vaue y of
outside temperature, we can compute the value » = ForcedHeat(x, y) by solving the
following four simultaneous equations

u = Controller (z,w)
v = Heater(u)

z = Room(y,v)

w = Sensor(z)

(1.17)

34 CHAPTER 1. SIGNALSAND SYSTEMS

Given z and y, an we must solve these four equations to determine the four unknown
functions u, v, w, z of which u, v, w are the internal signals, and z is the output signal.

Of course to solve these simultaneous equations, we need to specify the four system
functions. So far we have simply given names to those functions and identified their
domain and range. To compl ete the specification we must describe how those functions
assign output signals to input signals. The various ways of doing that are the subject of
later chapters.

1.3 Summary

Signals are functions that represent information. We studied examples of three classes of signals.
In the first class are functions of discrete or continuous time and space that occur in human and
machine perception. In the second class are functions of time and space representing attributes of
physical objects or devices. The third class of signals consist of sequences of symbols representing
data or the occurrences of events.

Systems are functions that transform signals. We looked at telecommunication systems, where a
network that was originally designed for carrying voice signas is used for many other kinds of
signals today. One way to accomplish this is to design systems such as modems that transform
signals so that they masquerade as voice-like signals. We also looked at system models for signal
degradation and for storage of signals. We looked at systems that are primarily concerned with
discrete events and command sequences, and we examined feedback control systems.

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some thought,
requires some conceptualization. Problems labeled E are usually mechanical, those labeled T re-
quire aplan of attack, those labeled C usually have more than one defensible answer.

1. C For each of the continuous-time signals below, represent thesignal intheformof f: X — Y
and as a sketch like figure 1.1. Carefully identify the range and domain in each case.
(@) Thevoltage across acar battery,
(b) The closing prices on each day of a share of a company,
(c) The position of amoving vehicle on a straight road,
(d) The simultaneous position of two moving vehicles on the same straight road, and
(e) The sound heard in both of your ears.

2. C Represent the following examples of spatial information asasigna intheformof f: X —
Y. Carefully identify the range and domain in each case.

(8 Animageimpressed on photgraphic paper,

1.3. SUMMARY 35

(b) Animage from a scanner stored in computer memory,
(c) The height of points on the surface of the earth,
(d) Thelocation of the chairsin aroom.

3. C Represent these examples as data or event sequences. Identify the range and domain in
each case.

(@) Theresult of 100 tosses of acoin,

(b) Thelog of button presses inside an elevator,

(c) Thelog of the main events in a soda vending machine,
(d) What you would say to a motorist asking directions,
(e) A play-by-play account of a game of chess.

4. C Formulate the following items of information as functions. Identify the domain and range
in each case.

(@) The population of U.S. cities,

(b) Thewhite pagesin aphone book (careful: the white pages may list two identical names,
and may list the same phone number under two different names),

(c) The birth dates of studentsin class,
(d) The broadcast frequencies of AM radio stations,
(e) The broadcast frequencies of FM radio stations, (look at your radio dia, or at the web
page:
http://ww. eecs. berkel ey. edu/ " eal / eecs20/ si debars/radi o/ i ndex. htm .

5. E Use Matlab to plot the graph of the following continuous-time functions defined over
[—1, 1], and on the same plot display 11 uniformly spaced samples (0.2 seconds apart) of
these functions. Are these samples good representations of the waveforms?

(@ f:[-1,1] — Reals,wherefor al = € [-1,1], f(z) = e *sin(107x).
(b) Chirp: [—1,1] — Reals, wherefor al t € [—1,1], Chirp(t) = cos(107#2).

6. T Thereis alarge difference between the sets X, Y, and [X — Y. This exercise explores
some of that difference.

(8 Suppose X = {a,b,c} andY = {0, 1}. List dl the functions from X to Y, i.e. al the
elements of [X — Y]
(b) If X hasm elementsand Y has n elements, how many elements does [X — Y] have?
(c) Suppose
Colormaplmages = [DiscreteVertical Space x DiscreteHorizontal Space
— ColorMaplndexes).
Suppose the domain of each image in this set has 6,000 pixels and the range has 256

values. How many distinct images are there? Give an approximate answer in the form
of 10™. Hint: a® = 10°1°810(2),

36

CHAPTER 1. SIGNALSAND SYSTEMS

Chapter 2

Defining Signals and Systems

The previous chapter describes the modeling of signals and systems as functions, concentrating on
how to select the domain and range. This chapter is concerned with how to give more complete
definitions of these functions. In particular, we need an assignment rule, which specifies how to
assign an element in the range to each element in the domain.

There are many ways to give an assignment rule. A theme of this chapter is that these different
ways have complementary uses. Procedural descriptions of the assignment rule, for example, are
more convenient for synthesizing signals or constructing implementations of a system in software
or hardware. Mathematical descriptions are more convenient for analyzing signals and systems and
determining their properties.

Given the complementary uses of descriptions of assignment rules, we find that in practice it is of -
ten necessary to use severa in combination. Much of what a practicing engineer does in designing
systemsisreconciling these diverse views, for example to ensure that particular piece of software in-
deed implements a system that is specified mathematically. We begin with adiscussion of functions
in general, and then specialize to signals and systems.

2.1 Defining functions

A function f: X — Y assigns to each element in X an element in Y. This assignment can be
defined by declaring the mathematical relationship between the value in X and the value in Y, by
graphing or enumerating the possible assignments, by giving a procedure for determining the value
inY given avalue in X, or by composing simpler functions. We go over each of these in more
detail in this section.

2.1.1 Declarative assgnment

Consider the function Square: Reals — Reals given by
Vz € Reals, Square(z) = z°. (2.1)

37

38 CHAPTER 2. DEFINING SIGNALSAND SYSTEMS

In (2.1), we have used the universal quantifier symbol ‘V’, which means ‘for all’ or ‘for every’
to declare the relationship between values in the domain of the function and values in the range.
Statement (2.1) isread: “for every value of x in Reals, the function Square evaluated at x is assigned
the value 22" The expression “Square(z) = 22” in (2.1) is an assignment.!

Expression (2.1) is an instance of the following prototype for defining functions. Define f: X — Y
by

‘VxeX, f(x):expronin:c.‘ (2.2

In this prototype, f isthe name of the function to be defined, such as Square, X isthe domain of f,
Y istherange of f, and ‘expressionin z’ specifiesthe valuein Y assigned to f(x).

The prototype (2.2) does not say how the ‘expression in z’ isto be evaluated. In the Square example
above, it was specified by the algebraic expression Square(z) = 2. Such a definition of a function
is said to be declar ative, because it declares properties of the function without directly explaining
how to construct the function.

Example 2.1: Here are some examples of functions of complex variables?

The magnitude of acomplex number is given by abs: Comps — Reals,, where Comps
isthe set of complex numbers and Reals, isthe set of set of non-negative real numbers,
and

Vz=xz+iy € Comps, abs(z)=1/(z?+y?)

The complex conjugate of a number, conj: Comps — Comps, is given by
Vz=ux+1iy € Comps, conj(z)=x—1iy

The exponential of acomplex number, exp: Comps — Comps, is given by

X _n
V z € Comps, exp(z) = Z z
n
n=0
It is worth emphasizing that the last definition is declarative. In particular, it does not
give aprocedure for calculating the exponential function, since the sumisinfinite. Such

a calculation would never terminate.

Example 2.2: The signum function gives the sign of area number, signum: Reals —

{-1,0,1},
-1 ifz<0
V2 e Reals, sgnum(z)=< 0 ifz=0 (2.3
1 ifx>0

The right side of this assignment tabulates three expressions for three different subsets
of the domain. Below we will consider a more extreme case of this where every value
in the domain is tabulated with avalue in the range.

1See appendix A for adiscussion of the use of “=" as an assignment, vs. its use as an assertion.
2See appendix B for areview of complex variables.

2.1. DEFINING FUNCTIONS 39

Example 2.3: The size of amatrix, size: Matrices — Nats x Nats, is given by
V M € Matrices, size(M) = (m,n),
where m is the number of rows of the matrix M, n is the number of columns of M,

and Matricesisthe set of all matrices.

This definition relies not only on formal mathematics, but also on the English sentence
that defines m and n. Without that sentence, the assignment would be meaningless.

212 Graphs

Consider afunction f: X — Y. Toeach z € X, f assignsthevalue f(z) inY. The pair (z, f(z))
is an element of the product set X x Y. The set of al such pairsis caled the graph of f, written
graph(f). Using the syntax of sets, graph(f) is the subset of X x Y defined by

graph(f) = {(z,y) |z € X andy = f(2)}, (2.4)

or slightly more simply,
graph(f) = {(z, f(2)) | z € X}.
The vertical bar | isread “such that,” and the expression after it is a predicate that defines the set®

When X C Realsand Y C Reals, we can plot graph(f) on apage. For example,

graph(Square) = {(z,2°) |« € [-1,1]}

is plotted in figure 2.1. In that figure, the horizontal and vertical axes represent the domain and the
range, respectively (more precisely, a subset of the domain and the range). The rectangular region
enclosed by these axes represents the product of the domain and the range (every point in that region
is amember of (Reals x Reals)). The graph is visualy rendered by placing a black dot at every
point in that region that is a member of graph(Square). The resulting picture is the familiar plot of
the Sguare function.

While the graph of f: X — Y isasubset of X x Y, itisavery particular sort of subset. For each
element x € X, thereisexactly oneelement y € Y suchthat (z,y) € graph(f). In particular, there
cannot be more than one such y € Y, and there cannot be no such y € Y. Thisis, in fact, what we
mean when we say that f isafunction.

Example2.4: Let X = {1,2} andY = {a,b}. Then

{(1,a),(2,a)}
is the graph of afunction, but
{(1,a),(1,0)}

isnot. Neither is

{(1,a)}.

3See appendix A for areview of this notation.

40

CHAPTER 2. DEFINING SIGNALSAND SYSTEMS

Figure 2.1: Graph of Square

2.1. DEFINING FUNCTIONS 41

Probing further: Relations

The graph of afunction f: X — Y isasubset of X x Y, asdefined in 2.4). An
arbitrary subset of X x Y iscalled arelation. Thus, afunction isaspecia kind of
relation. For relations, it iscommon to call X the domain and Y the codomain. A
relation isafunction if for every © € X thereisexactly oney € Y such that (z,y)
is an element of the relation. So arelation R € X x Y isafunction if for every
x € X thereisay; € Y suchthat (z,v1) € R, and if in addition (x, 1) € R, then

Y1 = Y2.

\ Name | Marks |

John Brown 90.0
Jane Doe 91.2

Table 2.1: Tabular representation of Score.

The graph of Square, graph(Square), is given by the algebraic expression for Square(z) = 2. In
other cases, no such algebraic expression exists. For example, Voice is specified through its graph
infigure 1.1, not through an algebraic expression. Thus, graphs can be used to define functions that
cannot be conveniently given by declarative assignments.

Consider again the prototype in (2.2),
VereX, f(zr)= expressioninz
Thegraph of fis
graph(f) = {(z,y) € X xY |y = expressioninz}.

The expression ‘y = expressioninz’ is a predicate in the variable (x,y) and so this prototype
definition conforms to the prototype new set constructor given in (A.4) of appendix A:

| Newset = {z € Set | Pred(2)}. |

Since the graph of f isaset, we can define the function f viaits graph using the same techniques
we use to define sets.

2.1.3 Tables

If f: X — Y hasfinitedomain, then graph(f) C X x Y isafinite set, so it can be specified simply
by alist of all itselements. Thislist can be put in the form of atable. Thistable definesthe function.

42 CHAPTER 2. DEFINING SIGNALSAND SYSTEMS

Example 2.5: Suppose the function
Score: Sudents — [0, 100]

gives the outcome of the first midterm exam for each student in the class. Obvioudly,
this function cannot be given by an algebraic declarative assignment. But it can cer-
tainly be given as atable, as shown in table2.1.

Example 2.6: The command nslookup on a networked computer is a function that
maps hostnames into their IP (Internet) address. For example, if you type:

nsl ookup cory. eecs. berkel ey. edu

you get the IP address 128.32.134.240. The domain name server attached to your
machine stores the nslookup function as atable.

2.1.4 Procedures

Sometimes the value f(z) that a function f assigns to an element = € domain(f) is obtained by
executing a procedure.

Example 2.7: HereisaMatlab procedure to compute the factorial function
fact: {1,---,10} — Nats,

where Nats is the natural numbers:

fact(1l) = 1;
for n = 2:10

fact(n) = n * fact(n-1);
end

Unlike previous mechanisms for defining a function, this one gives a constructive method to deter-
mine an element in the range given an element in the domain. This style is called imperative to
distinguish it from declarative. The relationship between these two styles is interesting, and quite
subtle. It is explored further in section2.1.6.

2.1.5 Composition

Functions can be combined to define new functions. The simplest mechanism is to connect the
output of one function to the input of another. We have been doing thisinformally to define systems
by connecting components in block diagrams such as figure1.18.

2.1. DEFINING FUNCTIONS 43

Figure 2.2: Function composition: f3 = fs o fj.

If thefirst function is f; and the second is f», then we write the composed function as f; o fi. That
is, for every x in the domain of fi,

[(f20) (@) = fa(fi(2))-|

This is caled function composition. A fundamental requirement for such a composition to be
valid is that the range of f; must be a subset of the domain of f. In other words, any output
from the first function must be in the set of possible inputs for the second. Thus, for example,
the output of modulator in figure 1.18 is a voice-like signal, which is precisely what the system
telephone network is able to accept as an input. Thus, we can compose the modulator with the
telephone network. Without this input-output connection restriction, the interconnection would be
meaningless.

It is worth pausing to study the notation f, o f1. Assume f1: X — Y and fo: X' — Y. Thenif
Y c X', we can define

f3=f20 fi,
where f3: X — Y’ such that
Vee X, fiz)=fafi(x)) (2.5)

Why is f; listed second in f, o f1? This convention simply mirrors the ordering of £(fi(z)) in
(2.5). We can visualize f3 asin figure 2.2.

Example 2.8: Consider the representation of a color image using a colormap. The
decoding of theimage is depicted in figurel.7. The image itself might be given by the
function

Colormapl mage: DiscreteVertical Space x DiscreteHorizontal Space — ColorMaplndexes.

The function
Display : ColorMaplndexes — Intensity?

44 CHAPTER 2. DEFINING SIGNALSAND SYSTEMS

decodes the colormap indexes. |If ColorMaplndexes has 256 values, it could be identi-
fied with the set Ints8 of all 8-bit words, aswe have seen. If we compose these functions

ColorComputerimage = Display o Colormaplmage
then we get the decoded representation of the image
ColorComputerImage: DiscreteVertical Space x DiscreteHorizontal Space — Intensity’.

ColorComputerlmage describes how an image looks when it is displayed, whereas
ColormapImage describes how it is stored in the computer.

If f: X — X,i.e thedomain and range of f are the same, we can form the function

fP=fof.

We can compose f? with f to form f3, and so on.

Example 2.9: Consider the function S:Real$ — Reals’, where the assignment
(y1,y2) = S(x1, z2) isdefined by matrix multiplication,

Y1 . 1 2 I
The function S? = S o S:Reals’ — Reals® is also defined by matrix multiplication,
and the corresponding matrix is the square of the matrix in .6).

To seethis, let (y1,y2) = S(x1,22) and (z1, 2z2) = S(y1,y2) = (S 0 S)(z1,x2). Then

- BB - BIEED - B
[a e - o)

Example 2.10: Consider another example in the context of the telephone system. Let
\oices be the set of possible voice input signals of the form

\oice: Time — Pressure.

\oices is afunction space,

\bices = [Time — Pressure].

2.1. DEFINING FUNCTIONS

A telephone converts a Voice signal into asignal in the set
LineSignals = [Time — \oltages|.
Thus, we could define
Mouthpiece: Voices — LineSgnals.
The twisted wire pair may distort this signal, so we define afunction
LocalLoop: LineSgnals — LineSignals.
The input to the line card therefore is
(LocalLoop o Mouthpiece) (\Voice).
Similarly let BitSreams be the set of possible bitstreams of the form:
BitStream: DiscreteTime — Bin
where DiscreteTime = {0, 1/64,000,2/64, 000, - - - }, since there are 64,000 bits/sec.

So,
BitStreams = [DiscreteTime — Bin|.

The encoder in aline card can be mathematically described as a function
Encoder: LineSgnals — BitSreams
or, with more detail, as afunction

Encoder: [Time — Voltages| — [DiscreteTime — Bin].

The digita telephone network itself might be modeled as a function
Network: BitStreams — BitStreams.

We can continue in this fashion until we model the entire path of avoice signal through
the telephone network as the function composition

EarpieceoLocal Loop, o Decoder oNetwor ko Encoder oLocal Loop, coMouthpiece. (2.7)

Given a complete definition of each of these functions, we would be well equipped to
understand the degradations experienced by avoice signal in the telephone network.

45

46

CHAPTER 2. DEFINING SIGNALSAND SYSTEMS

Probing further: Declarative interpretation of imper ative definitions

The declarative approach establishes a relation between the domain and the range
of afunction. For example, the equation

y = sin(x)/z

can be viewed as defining a subset of Reals x Reals. This subset is the graph of the
function Snc: Reals — Reals.

The imperative approach also establishes a function, but it is a function that maps
the program state before the statement is executed into a program state after the
statement is executed. Consider for example the Java statement

y = Math.sin(x)/x;

Considering only this statement (rather than a larger program), the program state
is the value of the two variables, x and y. Suppose that these have been declared
to be of type doubl e, which in Java represents double-precision floating-point
numbers encoding according to an |EEE standard. Let the set Doubles be the set of
al numbers so encoded, and note that NaN € Doubles, not a number, the result of
division by zero. The set of possible program states istherefore Doubles x Doubles.
The Java statement therefore defines a function

Statement: (Doubles x Doubles) — (Doubles x Doubles).

2.1. DEFINING FUNCTIONS 47

2.1.6 Declarativevs. imperative

Declarative definitions of functions assert a relationship between elements in the domain and ele-
ments in the range. Imperative definitions give a procedure for finding an element in the range given
one in the domain. Often, both types of specifications can be given for the same function. However
sometimes the specifications are subtly different.

Consider the function
SquareRoot: Reals; — Reals,

defined by the statement “ SquareRoot () isthe unique value of y € Reals, suchthat > = 2" This
declarative definition of SquareRoot does not tell us how to calculate its value at any point in its
domain. Nevertheless, it defines SquareRoot perfectly well. By contrast, an imperative definition
of SquareRoot would give us a procedure, or algorithm, for calculating SquareRoot(z) for a given
x. Call the result of such an agorithm . Since the algorithm would yield an approximation in
most cases, 7> would not be exactly equal to 2. So the declarative and imperative definitions are not
aways the same.

Any definition of afunction following the prototype (2.2) is a declarative definition. It does not give
aprocedure for evaluating ‘expression in z’.

Example2.11: Asanother example where declarative and imperative definitions differ
in subtle ways, consider the following mathematical equation:

sin(x).

(2.8)

y:
T

Consider the following Java statement:
y = Mat h. sin(x)/x;

or an equivalent Matlab statement
y = sin(x)/x

Superficialy, these look very similar to (2.8). There are minor differences in syntax
in the Java statement, but otherwise, it is hard to tell the difference. But there are
differences. For one, the mathematical equation (2.8) has meaning if y is known and
x isnot. It declares arelationship between x and y. The Java and Matlab statements
define a procedure for computing y given x. Those statements have no meaning if y is
known and z is not.

The mathematical equation (2.8) can be interpreted as a predicate that defines a func-
tion, for example the function Snc: Reals — Reals, where

graph(Snc) = {(z,y) | * € Reals,y = sin(z)/x}. (2.9

48 CHAPTER 2. DEFINING SIGNALSAND SYSTEMS

The Java and Matlab statements can be interpreted as imperative definitions of afunc-
tion*. That is, given an element in the domain, they specify how to compute an element
in the range. However, these two statements do not define the same function asin .9).

To seethis, consider the value of y when 2 = 0. Given the mathematical equation, it is
not entirely trivial to determine the value of . You can verify that y = 1 when z = 0
using I’Hopital’s rule® In contrast, the meaning of the Java and Matlab statements is
that y = 0/0 when = = 0, which Java and Matlab (and most modern languages) define
to be NaN, not a number. Thus, given 2 = 0, the procedures yield different values for
y than the mathematical expression.

We can see from the above example some of the strengths and weaknesses of imperative and declar-
ative approaches. Given only a declarative definition, it is difficult for a computer to determine
the value of y. Symbolic mathematical software, such as Maple and Mathematica, is designed to
deal with such situations, but these are very sophisticated programs. In general, using declarative
definitions in computers requires quite a bit more sophistication than using imperative definitions.

Imperative definitions are easier for computers to work with. But the Java and Matlab statements
illustrate one weakness of the imperative approach: it isarguable that y = NaNisthe wrong answer,
so the Java and Matlab statements have abug. Thisbug is unlikely to be detected unless, in testing,
these statements happen to be executed with the value x = 0. A correct Java program might look
like this:

if (x ==0.0) y = 1.0;
el se y = Math. sin(x)/x;

Thus, the imperative approach has the weakness that ensuring correctness is more difficult. Humans
have developed a huge arsenal of techniques and skills for thoroughly understanding declarative
definitions (thus lending confidence in their correctness), but we are only beginning to learn how to
ensure correctness in imperative definitions.

2.2 Defining signals

Signals are functions. Thus, both declarative and imperative approaches can be used to define them.

4Confusingly, many programming languages, including Matlab, use the term “function” to mean something a bit
different from a mathematical function. They use it to mean a procedure that can compute an element in the range of
a function given an element in its domain. Under certain restrictions (avoiding global variables for example), Matlab
functions do in fact compute mathematical functions. But in general, they do not.

°'Hopital’srule states that if f(a) = g(a) = 0, then

fl@) _ . f@)

lim —=% = lim
e—a () 2—a g'(2)

I

if the limit exists, where f'(x) isthe derivative of f with respect to .

2.2. DEFINING SIGNALS 49

2.2.1 Declarative definitions

Consider for example an audio signa s, a pure tone at 440 Hz (middle A on the piano keyboard).
Recall that audio signals are functions Sound: Time — Pressure, where the set Time C Reals
represents a range of time and the set Pressure represents air pressure® To define this function, we
might give the declarative description

ViteTme s(t)=sin(440 x 27t). (2.10)
In many texts, you will see the shorthand
s(t) = sin(440 x 27t)

used as the definition of the function s. Using the shorthand is only acceptable when the domain
of the function is well understood from the context. This shorthand can be particularly misleading
when considering systems, and so we will only use it sparingly. A portion of the graph of the
function (2.10) is shown in figure 1.3.

2.2.2 Imperative definitions

We can aso give an imperative description of such asignal. When thinking of signals rather than
more abstractly of functions, there is a subtle question that arises when we attempt to construct an
imperative definition. Do you give the value of s(t) for a particular t? Or for al ¢ in the domain?
Suppose we want the latter, which seems like a more complete definition of the function. Then we
have a problem. The domain of this function may be any time interval, or all time! Suppose we
just want one second of sound. Define¢ = 0 to be the start of that one second. Then the domain
is [0,1]. But there are an (uncountably) infinite number of values for ¢ in this range! No Java or
Matlab program could provide the value of s(t) for all these values of ¢.

Since a signal is function, we give an imperative description of the signal exactly as we did for
functions. We give a procedure that has the potential of providing values for s(t), given any t¢.

Example 2.12: We could define a Java method as follows:’

doubl e s(double t) {
return (Math.sin(440*2*Mat h. Pl *t));

}

Calling this method with a value for t as an argument yields avalue for s(t) . Java
(and most object-oriented languages) use the term “method” for most procedures.

®Recall further that we normalize Pressure so that zero represents the ambient air pressure. We also use arbitrary
units, rather than a physical unit such as millibars.

"It is uncommon, and not recommended, to use single-character names for methods and variables in programs. We
do it here only to emphasize the correspondence with the declarative definition. In mathematics, it is common to use
single-character names.

50 CHAPTER 2. DEFINING SIGNALSAND SYSTEMS

Another alternative is to provide aset of samples of the signal.

Example 2.13: In Matlab, we could define avector t that gives the values of time that
we are interested in:

t = [0:1/8000: 1] ;

In the vector t there are 8001 values evenly spaced between 0 and 1, so our sample
rate is 8000 samples per second. Then we can compute values of s for these values of
t and listen to the resulting sound:

s = cos(2*pi *440*t);
sound(s, 8000)

Thevector s also has 8001 elements, representing evenly spaced samples of one second
of A-440.

2.2.3 Physical modeling

An alternative way to define asignal isto construct amodel for a physical system that produces that
signal.

Example 2.14: A pure tone might be defined as a solution to a differential equation
that describes the physics of atuning fork.

A tuning fork consists of a metal finger (caled atine) that is displaced by striking it
with a hammer. After being displaced, it vibrates. If we assume that the tine has no
friction, then it will vibrate forever. We can denote the displacement of the tine after
being struck at time zero as a function x: Reals, — Reals. If we assume that the
initial displacement introduced by the hammer is one unit, then using our knowledge
of physics we can determine that for all ¢ € Reals,, the displacement satisfies the
differential equation

i(t) = —wia(t) (2.11)
where wy is constant that depends on the mass and stiffness of the tine, and and where
Z(t) denotes the second derivative with respect to time of x (see box).
It is easy to verify that x given by

Vx e Realsy, x(t) = cos(wot) (2.12)

is a solution to this differential equation (just take its second derivative). Thus, the
displacement of the tuning fork is sinusoidal. This displacement will couple directly
with air around the tuning fork, creating vibrations in the air (sound). If we choose
materials for the tuning fork so that wy = 27 x 440, then the tuning fork will produce
the tone of A-440 on the musical scale.

2.2. DEFINING SIGNALS

Probing further: Physics of a Tuning Fork

A tuning fork consists of two fingers called tines, as shown in figure2.3. If you
displace one of these tines by hitting it with a hammer, it will vibrate with a nearly
perfect sinusoidal characteristic. Asit vibrates, it pushes the air, creating a nearly
perfect sinusoidal variation in air pressure that propogates as sound. Why does it
vibrate this way?

Suppose the displacement of the tine (relative to its position at rest) at time ¢ is
given by z(t), where x: Reals — Reals. There is a force on the tine pushing it
towards its at-rest position. Thisis the restorative force of the elastic material used
to make the tine. The force is proportional to the displacement (the greater the
displacement, the greater the force), so

F(t) = —k’(L’(t),

where k is the proportionality constant that depends on the material and geometry
of the tine. In addition, Newton’s second law of motion tells us the relationship
between force and acceleration,

F(t) = ma(t),

where m isthe mass and a(t) is the acceleration at time ¢. Of course,

a2
aft) = & a(t) = (1),
SO
mi(t) = —kx(t)
or

#(t) = — (k/m)z(t).
Comparing with (2.11), we see that w3 = k/m.

A solution to this equation needs to be some signal that is proportional to its own
second derivative. A sinusoid asin (2.12) has exactly this property. The sinusoidal
behavior of thetineis called simple harmonic motion.

51

52 CHAPTER 2. DEFINING SIGNALSAND SYSTEMS

displacement restorative force
—_— —

tine

D

Figure 2.3: A tuning fork.

2.3 Defining systems

All of the methods that we have discussed for defining functions can be used, in principle, to define
systems. However, in practice, the situation is much more complicated for systems than for signals.
Recall from section 1.2.1 that a system is a function where the domain and range are sets of sig-
nals called signal spaces. Elements of these domains and ranges are considerably more difficult to
specify than, say, an element of Reals or Ints. For thisreason, it is almost never reasonable to use a
graph or atable to define a system. Much of the rest of this book is devoted to giving precise ways
to define systems where some analysis is possible. Here we consider some simple techniques that
can be immediately motivated. Then we show how more complicated systems can be constructed
from simpler ones using block diagrams. We give a rigorous meaning to these block diagrams so
that we can use them without resorting to perilous intuition to interpret them.

Consider asystem S where
S:[D— R] — [D' — R]. (2.13)

Suppose that x € [D — R] andy = S(z). Then we cal the pair (z,y) abehavior of the system.
A behavior is an input, output pair. The set of all behaviorsis

‘ Behaviors(S) = {(z,y) |z € [D — R]and y = S(:p)}.‘

Giving the set of behaviors is one way to define a system. Explicitly giving the set Behaviors,
however, is usually impractical, because it is a huge set, typically infinite (see boxes on pages305
and 306). Thus, we seek other ways of talking about the relationship between asigna x and asignal
ywheny = S(x).

To describe a system, one must specify its domain (the space of input signals), its range (the space
of output signals), and the rule by which the system assigns an output signal to each input signal.
This assignment rule is more difficult to describe and analyze than the input and output signals

2.3. DEFINING SYSTEMS 53

themselves. A table is amost never adequate, for example. Indeed for most systems we do not
have effective mathematical tools for describing or understanding their behavior. Thus, it is useful
to restrict our system designs to those we can understand. We first consider some simple examples.

2.3.1 Memoryless systems

A system F': [Reals — Y| — [Reals — Y| ismemoryless if thereisafunction f : Y — Y such
that
VteRealsandz € [Reals — Y], (F(x))(t) = f(z(t)).

Specification of a memoryless system reduces to specification of the function f. If Y isfinite, then
atable may be adequate.

Example 2.15: Consider atime-domain system with input = and output y, where for
al t € Reals,

y(t) = 2(t).

This exampl e defines asimple system, where the value of the output signal at each time
depends only on the value of the input signal at that time. Such systems are said to be
memoryless because you do not have to remember previous values of the input in order
to determine the current value of the outpuit.

2.3.2 Differential equations

Consider a class of systems given by functions S: ContSgnals — ContSgnals where ContSgnals
is a set of continuous-time signals. Depending on the scenario, we could have ContSgnals =
[Time — Realg] or ContSignals = [Time — Comps|, where Time = Reals or Time = Reals;.

These are often called continuous-time systems because they operate on continuous-time signals.
Frequently, such systems can be defined by differential equationsthat relate the input signal to the
output signal.

Example 2.16: Consider a continuous-time system with input = and output y = F'(z)
such that V ¢t € Reals,

1 t
M Jiw

By achange of variables this can also be written

y(t) x(T)dT.
M
y(t) = % /0 2(t — 7)dr.

Onceagain, thisisclearly not memoryless. Such asystem also hasthe effect of smooth-
ing asignal. We will study it and many related systems in detail.

54 CHAPTER 2. DEFINING SIGNALSAND SYSTEMS

Example 2.17: Consider aparticle constrained to move forward or backwards along a
straight line with an externally imposed acceleration. We will consider this particle to
be a system where the output is its position and the externally imposed acceleration is
the input.

Denote the position of the particle by x: Time — Reals, where Time = Reals,.. By
considering only the non-negative reals, we are assuming that the model has a starting
time. Denote the acceleration by a: Time — Reals. By the definition of acceleration,
the two signals are related by the differential equation

VteReals,, Z(t)=alt),

where % (t) denotes the second derivative with respect to time of z. If we know the
initial position =(0) and initial speed (0) of the particle at time 0, and if we are given
the acceleration a, we can evaluate the position at any ¢ by integrating this differential
eguation

2(t) = 2(0) + #(0)¢ + /0 i /0 " a(r)dr]ds. (2.14)

We can regard the initia position and velocity as inputs, together with acceleration, in
which case the system is a function

Particle: Reals x Reals x [Reals; — Reals| — [Reals; — Reals|,

where for any inputs (z(0), 2(0), a), x = Particle(x(0), #(0), a) must satisfy (2.14).

Suppose for example that theinput is (1, —1,a) whereV t € Reals,, a(t) = 1. Wecan
calculate the position by carrying out the integration in .14) to find that

VteRealsy, x(t)=1—t+ 0.5t

Suppose instead that z(0) = #(0) = 0 and V ¢ € Reals;, a(t) = cos(27 ft), where f
is some fixed number, the frequency of the input acceleration. Again, we can carry out
the integration to get

tors lcos2trmf —1
2 duds = ————————
/0 /0 cos(27 fu)duds Ry

Notice that the position of the particle is sinusoidal. Notice further that the amplitude
of this sinusoid decreases as f increases. Intuitively, this has to be the case. If the
externally imposed acceleration is varying more rapidly back and forth, the particle has
less time to respond to each direction of acceleration, and hence itsexcursion isless. In
subsequent chapters, we will study how the response of certain kinds of systems varies
with the frequency of the input.

2.3.3 Difference equations

Consider aclass of systems given by functions S: DiscSgnals — DiscSgnals where DiscSgnalsis
aset of discrete-time signals. Depending on the scenario, we could have DiscSgnals = [Ints —

2.3. DEFINING SYSTEMS

Reals| or DiscSgnals = [Ints — Comps|, or even DiscSgnals = [Nats — Reals|, or DiscSgnals =
[Natsy — Comps]. These are often called discrete-time systems because they operate on discrete-
time signals. Frequently, such systems can be defined by difference equations that relate the input

signal to the output signal.

Example 2.18. Consider a system
S:[Natsy — Reals] — [Natsy — Reals|
where for al = € [Natsy — Reals], S(x) = y isgiven by
Vnelnts, y(n)=(z(n)+x(n-—1))/2.

The output at each index is the average of two of the inputs. Thisis asimple example
of amoving aver age system, where typically more than two input values get averaged
to produce an output value.

Suppose that = u, the unit step function, defined by

1 ifn>0
Vnelnts, u(n)= { 0 otherwise (2.15)
We can easily calculate the output v,
1 ifn>1
Vnelnts yn)=¢ 1/2 ifn=0

0 otherwise

The system smoothes the transition of the unit step a bit. In fact, systems are popular
on Wall Street for smoothing the daily fluctuations of stock pricesin an effort to discern
trends in stock prices.

A dlightly more interesting input is a sinusoidal signa given by
Vnelnts, xz(n)=cos(2mfn).
The output is given by
Vnelnts, y(n)=(cos(2nfn)+ cos(2nf(n—1)))/2.
By trigonometric identities? this can be written as

y(n) = Rcos((2mfn + 0)

where

Acos(0+a)+ Beos(f+3) = Ccosf — Ssinf
= Rcos(0 + ¢)

C = Acosa+ Bcosf
S =Asina+ Bsinf
R =C?+52

¢ = arctan(S/C)

56 CHAPTER 2. DEFINING SIGNALSAND SYSTEMS

where
B sin(—27 f)
9 = arCtan(HT(_Qﬂ_f))/2,
R = /24 2cos(2nf)

As in the previous example, a sinusoidal input stimulates a sinusoidal output with the
same frequency. In this case, the amplitude of the output varies (in afairly complicated
way) as afunction of the input frequency. We will examine this phenomenon in more
detail in subsequent chapters by studying the frequency response of such systems.

Example 2.19: The general form for amoving average is given by

1 M-1
Vn e Ints, y(n)= i Z x(n —k),
k=0

where z is the input and y is the output. This system is called an M -point moving
average, since at any n it gives the average of the M most recent values of the input.
It computes an average, just like example2.16 but the integral has been replaced by its
discrete counterpart, the sum.

Moving averages are widely used on Wall Street to smooth out momentary fluctuations in stock
pricesto try to determine general trends. We will study the smoothing properties of this system. We
will also study more general forms of difference equations of which the moving average is a specia
case.

The examples above give declarative definitions of systems. Imperative definitions require giving a
procedure for computing the output signal given the input signal. It is clear how to do that with the
memoryless system, assuming that an imperative definition of the function f is available, and with
the moving average. Theintegral equation, however, is harder to defineimperatively. Animperative
description of such systems that is suitable for computation on a computer requires approximation
via solvers for differential equations. Simulink, for example, which is part of the Matlab package,
provides such solvers. Alternatively, an imperative description can be given in terms of analog
circuits or other physical systems that operate directly on the pertinent continuous domain. Discrete-
time systems often have reasonable imperative definitions as state machines, considered in detail
in the next chapter.

2.34 Composing systemsusing block diagrams

We have been using block diagrams informally to describe systems. A block diagram is a visual
syntax for describing a system as an interconnection of other (component) systems, each of which
emphasizes one particular input-to-output transformation of asignal. A block diagram is a collec-
tion of blocks interconnected by arrows. Arrows are labeled by signals. Each block represents an
individual system that transforms an incoming or input signal into an outgoing or output signal.

2.3. DEFINING SYSTEMS 57

xOX y ay
—>»| S: XY |——>»
X=[Dy - Ryl Y=[Dy - Ry]

Figure 2.4: The simplest block diagram represents a function S that maps
an input signal z € X to an output signal y € Y. The domain and range of
the input are Dx and Ry, repectively, and of the output, Dy and Ry .

For example, modulator in figure 1.18 is a system that transforms a bit sequence into a voice-like
signal.

We can use function composition, as discussed in section2.1.5, to give a precise meaning to block
diagrams. A block represents a function, and the connection of an output from one block to the
input of another represents the composition of their two functions. The only syntactic requirement
for interconnecting two blocks is that the output of the first block must be an acceptable input for
the second. Thus, for example, the output of modulator in figurel.18 is a voice-like signal, which
is precisely what the system telephone network is able to accept as an input.

Block diagrams can be more readable than symbolic function composition, particularly for compli-
cated interconnections. They also offer a natura hierarchy, where we can combine blocks to hide
certain signals and component systems and to emphasize others. For instance, the tel ephone network
in figure 1.18 hides the details shown in figure 1.14. This emphasizes the POTS capabilities of the
telephone network, while hiding its other features.

The simplest block diagram has a single block, as in figure2.4. The block represents a system
with input signal x and output signal y. Here, x denotes a variable over the set X, and y denotes a
variable over the set Y. The system is described by the function S: X — Y. Both X and Y are sets
of functions or signals. Therefore the variables = and y themselves denote functions.

Cascade Composition

The voice path in (2.7) is an example of cascade composition of functions. In general, a system
obtained by a cascade composition of two blocks is given by the composition of the functions
describing those blocks. In figure 2.5 the function .S describes the system obtained by connecting
the systems S and Sy, with S = S5 0 51, i.e.

VrelX, S($) 252(51(.%))

The combined system hasinput signal z, output signa z, and internal signal y. Of course, the range
of the first system must be be contained by the domain of the second for this composition to make
sense. In the figure, the typical case is shown where this range and domain are the same.

58

CHAPTER 2. DEFINING SIGNALSAND SYSTEMS

Probing further: Composition of graphs

We suggest a general method for writing down a declarative specification of the
interconnected system S in figure2.5 in terms of the subsystems S; and S and the
connection restriction that the output of S; be acceptable as an input of S,.

We describe S; and .S, by their graphs,
graph(S1) = {(z,41) € X X Y [y1 = Si(2)},

graph(Sz) = {(y2,2) €Y x Z | 2 = Sa(y2)},

and we specify the connection restriction as the predicate

Y1 = Y2.

Note that we use different dummy variables v and y- to distinguish between the
two systems and the connection restriction.

The graph of the combined system S is then given by

graph(S) = {(z,2) € X x Z | 3y1,Jy2
(2,91) € graph(Sy) A (y2, z) € graph(S2) Ayr = ya}-

Here, A denotes logical conjunction, “and.” It is now straightforward to show that
graph(S) = graph(S; 0 S;) sothat S = S5 0 S;.

In the case of the cascade compoasition of figure2.5 this elaborate method is un-
necessary, since we can write down S = S, o .S; simply by inspecting the figure.
For feedback connections, we may not be able to write down the combined system
directly.

There are three other reasons to understand this method. First, we use it later to
obtain a description of interconnected state machines from their component ma-
chines. Second, this method is used to describe electronic circuits. Third, if we
want a computer to figure out the description of the interconnected system from a
description of the subsystems and the connection restrictions, we have to design an
algorithm that the computer must follow. Such an algorithm can be based on this
general method.

2.3. DEFINING SYSTEMS 59

xOX y oy z0z
— > S X Y/ | S Y L [/
X=[D-R| Y=[D' - R] Z=[D" - R
S:X-Z

Figure 2.5: The cascade composition of the two systems is described by

S =5508].
wiOW
>
W:[DW_> RW]
zZ
WxY - Z
K Z=[D, - R/
xOX y oy
———>»{S XY
X=[Dy - Ryl Y=[Dy - Ry
S:WxX . Z

Figure 2.6: The combined system with input signals x, w and output signal
z is described by the function S, where V (z,w), S(z,w) = Sa(w, S1(z)).

More complex block diagrams

Consider two more block diagrams with dlightly more complicated structure. Figure2.6 is similar
to figure 2.5. The system described by S isthe same as before, but the system described by S, has
apair of input signals (w,y) € W x Y. The combined system hasthe pair (z, w) € X x W asinput
signal, z asoutput signal, y asinternal signal, and it is described by the function S: X x W — Z,
where

V(z,w)e X x W, S(z,w)= Sa(w, S1(x)). (2.16)

The system of figure 2.7 is obtained from that of figure 2.6 by connecting the output signal z to the
input signal w. Asaresult the new system hasinput signal x, output signal z, internal signals y and
w, and it is described by the function §': X — Z, where

VeeX, S'(z)=5(5(z),S(x)). (2.17)

The connection of z to w is called afeedback connection because the output z isfed back as input
w. Of course, such a connection has meaning only if Z, the range of S, isasubset of V.

Thereisone enormous difference between (2.16) and (2.17). Expression (2.16) serves asadefinition
of the function S: to every (z,w) in its domain S assigns the value given by the right-hand side

60 CHAPTER 2. DEFINING SIGNALSAND SYSTEMS

zOW
ZO0W
z0Z
TWxY - Z
> Z=[D; - Rj]
xOX y Oy
S :X-Y
X=[Dy - Ryl Y=[Dy - Ry
S: X5 Z

Figure 2.7: The combined system is described by the function S’, where
§'(x) = S3(5'(x), S1(x)).

which is uniquely determined by the given functions S, and S,. But in expression (2.17) the value
S’(x) assigned to = may not be determined by the right-hand side of @.17), since the right-hand
sideitself dependson S'(x). In other words, (2.17) is an equation that must be solved to determine
the value of S'(x) for agiven z; i.e. S’'(x) = y where y isasolution of

y = Sa(y, S1(x)). (2.18)

Such a solution, if it exists, is called afixed point. We now face the difficulty that this equation
may have no solution, exactly one solution, or several solutions. Another difficulty isthat the value
y that solves (2.18) is not a number but afunction. So it will not be easy to solve such an equation.
Since feedback connections always arise in control systems, we will study how to solve them. We
will first solve them in the context of state machines, which are introduced in the next chapter.

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some thought,
and requires some conceptualization. Problems labeled E are usually mechanical, those labeled T
require a plan of attack, those labeled C usually have more than one defensible answer.

1. E The broadcast signal of an AM radio station located at 110 on your dia has a carrier
frequency of 110 kHz. An AM signal that includes the carrier has the form

VteTime, AMSgnal(t) = (14 m(t))sin(27 x 110,000¢),

where m isan audio signal like Voice in figure1.1, except that vV ¢ € Time, |m(t)| < 1. Since
you cannot easily plot such a high frequency signal, give an expression for and plot AMSgnal
(using Matlab) for the case where Time = [0, 1], m(t) = cos(wt), and the carrier frequency
is20 Hz.

2.3. DEFINING SYSTEMS 61

o

-05

Figure 2.8: Graphs of two functions. The bold line is the graph.

2. T This problem studies the relationship between the notion of delay and the graph of afunc-
tion.

(8 Consider two functions f and g from Reals into RealswhereV ¢ € Reals, f(t) = t and
g(t) = f(t —to), where ty is afixed number. Sketch aplot of f and g for ¢, = 1 and
to = —1. Observe that if ¢, > 0 then graph(g) is obtained by moving graph(f) to the
right, and if ¢y < 0 by moving it to the | eft.

(b) Show that if f: Reals — Realsisany function whatsoever, and vV ¢, ¢(t) = f(t — 1),
then if (¢,y) € graph(f), then (¢ + t,y) € graph(g). Thisis another way of saying
that if ¢y > 0 then the graph is moved to the right, and if 4y < 0 then the graph is moved
to the left.

(c) If t represents time, and if ¢, > 0, we say that g is obtained by delaying f. Why isit
reasonable to say this?

3. E Figure 2.8 shows graphs of two different functions of the form f:[-1,1] — [-1,1]. For
each case, define f by giving an algebraic expression for its value at each point in its domain.
This expression will have severa parts, similar to the definition of the signum function in
(2.3). Notethat f(0) = 0 for the graph on theright. Call f; the function on the left and f,. the
function on theright. Plot graph(f; o f,.) and graph(f, o f;).

4. T Let X = {a,b,c}, Y = {1,2}. For each of the following subsets G C X x Y, determine
whether G isthe graph of afunction from X to Y, and if it is, describe the function as atable.

(a) G = {(a7 1)7 (b7 1)7 (07 2)}
(b) G= {(a7 1)7 (av 2)7 (bv 1)7 (67 2)}
(C) G = {(a7 1)7 (b7 2)}

5. C A router in the Internet is a switch with several input ports and severa output ports. A
packet containing data arrives at an input port at an arbitrary time, and the switch forwards
the packet to one of the outgoing ports. The ports of different routers are connected by
transmission links. When a packet arrives at an input port, the switch examines the packet,
extracting from it a destination address d. The switch then looks up the output port in its
routing table, which contains entries of the form (d, outputPort). It then forwards the packet
to the specified output port. The Internet works by setting up the routing tables in the routers.

62 CHAPTER 2. DEFINING SIGNALSAND SYSTEMS

X7 O Bin y; O Bin
e
F:Bin™ - Bin"
Xy O Bin y, O Bin
—_ —>
Figure 2.9: The logic circuit has m binary inputs (z1,- -, z,,) and n binary

outputs (y1,- -, Yn)-

Consider asimplified router with one input port and and two output ports, named O, O. Let
D bethe set of destination addresses.

(8 Explain why the routing table can be described asasubset 7' C D x {O, O2}.
(b) Isitreasonable to constrain T to be the graph of afunction from D — {O, O3 }? Why?

(c) Assume the signal at the input port is a sequence of packets. How would you describe
the space of input signals to the router and output signals from the router?

(d) How would you describe the switch as a function from the space of input signals to the
space of output signals?

6. C For each of the following expressions, state whether it can be interpreted as an assignment,
an assertion, or a predicate. More than one choice may be valid because the full context is not
supplied.

@ z =5,

(b) A= {5},

(€) z > 5,

(d) 3> 5,

e z>5Az<3.

7. T A logic circuit with m binary inputs and n binary outputs is shown in figure2.9. It is
described by afunction F: X — Y where X = Bin” and Y = Bin". (In acircuit, the signal
values 1 and 0 in Bin correspond to voltage High and Low, respectively.) How many such
distinct logic functions F' are there?

8. T Thefollowing system S takes adiscrete-time signal z € X and transformsit into adiscrete-
timesignal y € Y whose value at index n is the average of the previous 4 values of z. Such
asystem is caled amoving average. Suppose that X = Y = [Nats — Reals|, where Nats
is the set of natural numbers. More precisely, the system is described by the function S such
that for any = € X, y = S(z) isgiven by

) (@) 4+ 2(n)]/4 forl<n<4
YD) =Y (n—3)+2(n—2) + o —1) +2(n)]/4 forn >4

2.3. DEFINING SYSTEMS 63

10.

Notice that the first three samples are averages only if we assume that samples prior to those
that are available have value zero. Thus, thereisaninitia transient while the system collects
enough data to begin computing meaningful averages.

Write a Matlab program to calculate and plot the output signal y for time 1 < n < 20 for the
following input signals:

(8 zisaunit step delayed by 10, i.e. z(n) = 0forn < 9and z(n) = 1 for n > 10.

(b) x isaunit step delayed by 15.

(c) z dternates between +1 and -1, i.e. z(n) = 1 for n odd, and z(n) = —1 for n even.
Hint: Try computing cos(mn) for n € Nats.

(d) Comment on what this system does. Qualitatively, how is the output signal different
from the input signal ?

T The following system is similar to the one in the previous problem, but time is continuous.
Now X =Y = [Reals — Reals| and the system F': X — Y is defined as follows. For all
r € X andt € Reals .

1
~ 10 Ji—10

(F(2))(1)

Show that if x isthe sinusoidal signal

x(s)ds

Vte Reals x(t) = sin(wt),
then y isalso sinusoidal
Vte Reals, y(t) = Asin(wt+ ¢).

You do not need to give precise expressions for A and ¢, but just show that the result has
this form. Also, show that as w gets large, the amplitude of the output gets small. Higher
frequencies, which represent more abrupt changes in the input, are more attenuated by the
system than lower frequencies.

Hint: Thefollowing fact from calculus may be useful:
b 1
/ sin(ws)ds = —(cos(wa) — cos(wb)).
a w

Also, the identity in the footnote on page 55 might be useful to show that the output is sinu-
soidal with the appropriate frequency.

E Suppose that f: Reals — Realsand g: Reals — Ints such that for all = € Reals,
1 ifx>0
glz)=4 0 ifz=0
-1 ifz<0

and
flz)=14=.

64 CHAPTER 2. DEFINING SIGNALSAND SYSTEMS
(a) Defineh =go f.
(b) Suppose that

F:[Reals — Reals] — [Reals — Realg|
G:[Reals — Reals) — [Reals — Ints]

such that for all s € [Reals — Reals| and = € Reals,

(F(s))(z) = f(s(x))
(G(s))(x) = g(s(x))

where f and g are as given above. Sketch ablock diagram for H = G o F', where you
have one block for each of G and F'. Label the inputs and outputs of your blocks with
the domain and range of the functions in the blocks.

(c) Lets € [Reals — Reals] be such that for all = € Reals,
s(z) = cos(mx).

Define v where

11. T Let D = DiscSgnals = [Ints — Reals] and let
G:DxD—D
such that for all =,y € D and for al n € Ints,
(G(z,9))(n) = z(n) —y(n —1).

Now suppose we construct a new system H as follows:

H

Define H (as much as you can).

Chapter 3

State-Space Models

Systems are functions that transform signals. The domain and the range of these functions are
both signal spaces, which significantly complicates specification of the functions. A broad class of
systems can be characterized using the concept of state and the idea that a system evolves through
a segquence of changes in state, or state transitions. Such characterizations are called state-space
models.

A state-space model describes a system procedurally, giving a sequence of step-by-step operations
for the evolution of a system. It shows how the input signal drives changes in state, and how the
output signal is produced. It isthus an imperative description. Implementing a system described by
a state-space model in software or hardware is straightforward. The hardware or software simply
needs to sequentially carry out the steps given by the model. Conversely, given a piece of software
or hardware, it is often useful to describe it using a state-space model, which yields better to analysis
than more informal descriptions.

In this chapter, we introduce state-space models by discussing systems with afinite (and relatively
small) number of states. Such systems typically operate on event streams, often implementing
control logic. For example, the decision logic of modem negotiation described in chapterl can be
modeled using a finite state model. Such a model is much more precise than the English-language
descriptions that are commonly used for such systems.

3.1 State machines

A description of a system as a function involves three entities: the set of input signals, the set of
output signals, and the function itself, F': InputSgnals — OutputSgnals. For a state machine, the
input and output signals have the form

EventSream: Natsy — Symbols,

where Natsy = {0, 1,2, -- -}, and Symbolsisan arbitrary set. The domain of these signals represents
ordering but not necessarily time (neither discrete nor continuous time). The ordering of the domain

65

66 CHAPTER 3. STATE-SPACEMODELS

means that we can say that one event occurs before or after another event. But we cannot say how
much time elapsed between these events. In chapter 5 we will study how state-space models can be
used with functions of time.

A state machine constructs the output signal one element at atime by observing the input signal one
element at atime. Specifically, a state machine StateMachine is a 5-tuple,

SateMachine = (States, Inputs, Outputs, update, initial Sate) (3.1

where States, | nputs, Outputs are sets, update is a function, and initialSate € States. The meaning
of these namesis:

Sates is the state space,

Inputs is the input alphabet,

Outputs is the output alphabet,

initial Sate € Satesistheinitial state, and

update: Sates x Inputs — Sates x Outputs is the update function.

Thisfive-tuple is called the sets and functions model of a state machine.
Inputs and Outputs are the sets of possible input and output values. The set of input signals consists
of all infinite sequences of input values,

InputSignals = [Nats) — Inputs].

The set of output signals consists of all infinite sequences of output values,

OutputSignals = [Natsgy — Outputs].

Let x € InputSgnals be an input signal. A particular element in the signal can be written z(n) for
any n € Natsy. We write the entire input as a sequence

This sequence defines the function x in terms of elements z:(n) € Inputs, which represent particular
input values.

We reiterate that the index n in z(n) does not refer to time, but rather to the step number. This
is an ordering constraint only: step n occurs after step n — 1 and before step n + 1. The state
machine evolves (i.e. moves from one state to the next) in steps?

10Of course the steps could last a fixed duration of time, in which case there would be a simple relationship between
step number and time. The relationship may be a mixed one, where some inputs are separated by afixed amount of time
and some are not.

3.1. STATE MACHINES 67

3.1.1 Updates

Theinterpretation of updateisthis. If s(n) € Statesisthe current state at step n, and z(n) € Inputs
isthe current input, then the current output and the next state are given by

(s(n+1),y(n)) = update(s(n), z(n)).

Thus the update function makes it possible for the state machine to construct the output signal step
by step by observing the input signal step by step.

The state machine SateMachine of (3.1) defines a function
F: InputSignals — OutputSgnals (3.2

such that for any input signal = € InputSgnals the corresponding output signal isy = F(x).
However, it does much more than just define this function. It aso gives usaprocedure for evaluating
this function on a particular input signal. The state response (s(0),s(1),---) and output y are
constructed as follows:

s(0) = initialSate, (3.3)
Vn >0, (s(n+1),y(n)) = update(s(n),z(n)), (34)

Observe that if the initial state is changed, the function F' will change, so the initia state is an
essential part of the definition of a state machine.

Each evaluation of (3.4) iscalled areaction because it defines how the state machine reacts to a par-
ticular input symbol. Note that exactly one output symbol is produced for each input symbol. Thus,
it is not necessary to have access to the entire input sequence to start producing output symbols.
This feature proves extremely useful in practice, sinceit is usually impractical to have access to the
entire input sequence (it isinfinite in size!). The procedure summarized by @3.3)«3.4) iscausal, in

that the next state s(n + 1) and current output y(n) depend only on the initial state s(0) and current
and past inputs z(0), z(1),- - -, z(n).

3.1.2 Stuttering

A state machine produces exactly one output symbol for each input symbol. For each input symbol,
it may also change state (of course, it could also remain in the same state by changing back to the
same state). This means that with no input symbol, there is neither an output symbol nor a change
of state.

Later, when we compose simpler state machines to construct more complicated ones, it will prove
convenient to be explicit in the model about the fact that no input triggers no output and no state
change. We do that by insisting that the input and output symbol setsinclude a stuttering element,
typicaly denoted absent. That is,

absent € Inputs, and absent € Outputs.

68 CHAPTER 3. STATE-SPACEMODELS

Moreover, we require that for any s € States,
update(s, absent) = (s, absent). (3.5

Thisiscalled astuttering reaction because no progress is made. An absent input triggers an absent
output and no state change. Now any number of absent elements may be inserted into the input
sequence, anywhere, without changing the non-absent outputs.

Example 3.1: Consider a 60-minute parking meter. There are three (non-stuttering)
inputs: in5 and in25 which represent feeding the meter 5 and 25 cents respectively,
and tick which represents the passage of one minute. The meter displays the timein
minutes remaining before the meter expires. When in5 occurs, this timeisincremented
by 5, and when in25 occurs it is incremented by 25, up to a maximum of 60 minutes.
When tick occurs, the time is decremented by 1, down to a minimum of 0. When the
remaining timeis 0, the display reads expired.

We can construct a finite-state machine model for this parking meter. The set of states
is
States = {0, 1,2, ...,60}.

The input and output alphabets are
Inputs = {in5, in25, tick, absent }.

Outputs = {expired, 1,2, ..., 60, absent }.

Theinitia stateis
initialSate = 0.

The update function
update: Sates x Inputs — States x Outputs

isgiven by, V s € States, x € Inputs,

(0, expired) if z=tickA(s=0Vs=1)

(s—1,s—1) if z=tickAs>1
update(s,z) = ¢ (min(s + 5,60), min(s + 5, 60)) if x=in5

(min(s + 25,60), min(s + 25,60)) if =z =1in25

(s, absent) if x = absent

where min is afunction that returns the minimum of its arguments.

If the input sequence is in25,tick®’,in5, tick!’, ..., for example, then the output se-
quence i’
expired, 25,24, ...,6,5,10,9,8, ...2, 1, expired.

2\We are using the common notation tick'® to mean a sequence of 10 consecutive ticks.

3.2. FINITE STATE MACHINES 69

3.2 Finite state machines

Often, Sates is afinite set. In this case, the state machine is called a finite state machine, abbre-
viated FSM. FSMs yield to powerful analytical techniques because, in principle, it is possible to
explore al possible sequences of states. The parking meter example above is afinite state machine.

When the number of states is small, and the input and output alphabets are finite (and small), we
can describe the state machine using a very readable and intuitive diagram called a state transition
diagram. (Figure 3.6(a) is the state machine diagram of the parking meter.)

Example 3.2 A verba description of an automatic telephone answering machine
might go like this.

When a call arrives, the phone rings. If the phone is not picked up, then
on the third ring, the machine answers. It plays a pre-recorded greeting
requesting that the caller leave amessage (“Hello, sorry | can’'t answer your
cal right now ... Please leave a message after the beep”), then records the
caller’'s message, and then automatically hangs up. If the phone is answered
before the third ring, the machine does nothing.

Figure 3.1 shows a state transition diagram for the state machine model of this answer-
ing machine.

Without any further explanation, the reader can probably read the diagram in figure3.1. It is suffi-
ciently intuitive. Nonetheless, we will explain it precisely.

3.21 Statetransition diagrams

Figure 3.1 consists of bubbles linked by arcs. (The arcs are also called arrows.) In this bubbles-and-
arcs syntax each bubble represents one state of the answering machine, and each arc represents a
transition from one state to another. The bubbles and arcs are annotated, i.e. they are labeled with
some text. The execution of the state machine consists of a sequence reactions, where each reaction
involves a transition from one state to another (or back to the same state) along one of the arcs. The
tables at the bottom of the figure are not part of the state transition diagram, but they improve our
understanding of the diagram by giving the meanings of the names of the states, inputs, and outputs.

The notation for state transition diagrams, which we will fully explain in this chapter and the next
one, is summarized in figure 3.2. Each bubble is labeled with the name of the state it represents.
The state names can be anything, but they must be distinct. The state machine of figure3.1 has five
states. The state names define the state space,

States = {idle, countl, count2, play greeting, recording}.

Each arcislabeled by aguard and (optionally) an output. If an output is given, it is separated from
the guard by a slash, asin the example {ring} /answer going from state count2 to play greeting. A

70

CHAPTER 3. STATE-SPACEMODELS

{end message } /recorded

{ absent}

states

idle: nothing is happening

countl: onering has arrived

count2: two rings have arrived

play greeting: playing the greeting message
recording : recording the message

inputs

ring - incoming ringing signal

offhook - atelephone extension is picked up

end greeting - greeting message is finished playing
end message - end of message detected (e.g. dialtone)
absent - no input of interest.

outputs

answer - answer the phone and start the greeting message
record - start recording the incoming message

recorded- recorded an incoming message

absent - default output when there is nothing interesting to say

{ring } /answer

{absent}

{end greeting } /record

Figure 3.1: State transition diagram for the telephone answering machine.

3.2. FINITE STATE MACHINES

guardl/outputl

guard2/output2

initial state indicator

state machine:

(Sates, Inputs, Outputs, update, initial Sate)
update: States x Inputs — States x Outputs
initial SYate € Sates

elements:

state € States

outputl, output2 € Outputs

guardl, guard2 C Inputs

else = {z € Inputs | = ¢ (guardl U guard2)}

determinacy: (There at most one possible reaction to an input)
guardl N guard2 = ()

Figure 3.2: Summary of notation in state transition diagrams, shown for a

single state with two outgoing arcs and one self loop.

71

72 CHAPTER 3. STATE-SPACEMODELS

guard specifies which inputs might trigger the associated transition. It is a subset of the Inputs, the
input alphabet, which for the answering machine is

Inputs = {ring, offhook, end greeting, end message, absent }.

In figure 3.1, some guards are labeled “else” This special notation designates an arc that is taken
when there is no match on any other guard emerging from a given state. The arc with the guard else
is caled the else arc. Thus, elseisthe set of al inputs not included in any other guard emerging
from the state. For the example in figure 3.2, else is defined by

else = {z € Inputs | = ¢ (guardl U guard2)}.

In general, for agiven state, elseis the complement with respect to Inputs of the union of the guards
on emerging arcs. If no else arc is specified, and the set else is not empty, then the else arc is
implicitly aself loop, as shown by the dashed arc in figure3.2. A self loop isan arc that transitions
back to the same state. When the else arc isa self loop, then the stuttering element may be a member
of the set else.

Initially, the system of figure3.1 isin theidle state. Theinitial stateisindicated by the bold arc on
the left that leads into the state idle. Each time an input arrives, the state machine reacts. It checks
the guards on arcs going out of the current state and determines which of them contains the input.
It then takes that transition.

Two problems might occur.

e Theinput may not be contained in the guard of any outgoing arc. In our state machine models,
for every state, there is at least one outgoing transition that matches the input (because of the
else arc). This property is called receptiveness; it means that the machine can always react
to aninput. That is, there is aways atransition out of the current state that is enabled by the
current input. (The transition may lead back to current state if it is a self loop.) Our state
machines are said to be receptive.

e More than one guard going out from the current state may contain the input. A state machine
that has such a structure is said to be nondeter ministic. The machine is free to choose any
arc whose guard contains the input, so more than one behavior is possible for the machine.
Nondeterministic state machines will be discussed further below. Until then, we assume that
the guards are always defined to give deterministic state machines. Specifically, the guards on
outgoing arcs from any state are mutually exclusive. In other words, the intersection of any
two guards on outgoing arcs of a state is empty, asindicated in figure3.2. Of course, by the
definition of the else set, for any guard that is not else, it is true that guard N else = .

A sequence of inputs thus triggers a sequence of state transitions. The resulting sequence of states
is called the state response.

Example 3.3: Infigure 3.1, if the input sequenceis

(ring, ring, offhook, - - -)

3.2. FINITE STATE MACHINES 73

then the state response is
(idle, countl, count2;idle, - - -).

The dlipsis (“- - -") are there because the answering machine generally responds to an
infinite input sequence, and we are showing only the beginning of that response. This
behavior can be compactly represented by atrace,

) i i ffhook
idle rl_ng] countl rﬂ? count2 0 —0>0 idle

A trace represents the state response together with the input sequence that triggers it.
This trace describes the behavior of the answering machine when someone picks up a
telephone extension after two rings?

A more elaborate trace illustrates the behavior of the answering machine when it takes

amessage:
idle rng countl ring count2 ring play greeting (3.6)

end %eti g recording end message idle

A state machine also produces outputs. In figure3.1, the output alphabet is
Outputs = {answer, record, recorded, absent }.

An output is produced as part of areaction. The output that is produced isindicated after aslash on
an arc. If the arc annotation shows no output, then the output is absent.

Example 3.4: The output sequence for the trace (3.6) is
(absent, absent, answer , record, recorded, - -).

There isan output symbol for every input symbol, and some of the output symbols are
absent.

It should be clear how to obtain the state response and output sequence for any input sequence. We
beginintheinitia state and then follow the state transition diagram to determine the successive state
transitions for successive inputs. Knowing the sequence of transitions, we aso know the sequence
of outputs.

3When you lift the handset of a telephone to answer, your phone sends a signal called ‘offhook’ to the telephone
switch. The reason for the name ‘offhook’ isthat in the earliest telephone designs, the handset hung from a hook on the
side of the phone. In order to answer, you had to pick the handset off the hook. When you finished your conversation
you replaced the handset on the hook, generating an ‘onhook’ signal. The onhook signal is irrelevant to the answering
machine, so it is not included in the model.

74 CHAPTER 3. STATE-SPACEMODELS

Shorthand

State transition diagrams can get very verbose, with many arcs with complicated labels. A number
of shorthand options can make a diagram clearer by reducing the clutter.

e If no guard is specified on an arc, then that transition is always taken when the state machine
reacts and is in the state from which arc emerges, as long as the input is not the stuttering
element. That is, giving no guard is equivalent to giving the entire set Inputs as a guard,
minus the stuttering element. The stuttering element, recall, always triggers atransition back
to the same state, and always produces a stuttering element on the output.

e Any clear notation for specifying subsets can be used to specify guards. For example, if
Inputs = {a, b, ¢}, then the guard {b, ¢} can be given by —a (read “not a”).

¢ An elsetransition for a state need not be given explicitly. Itisan implied self-loop if it is not
given. Thisiswhy it is shown with a dashed line in figure3.2. The output is the stuttering
element of Outputsif it is not given.

These shorthand notations are not always a good idea. For example, the else transitions often
correspond to exceptional (unexpected) input sequences, and staying in the same state might not
be the right behavior. For instance, in figure 3.1, al else transitions are shown explicitly, and
all exceptional input sequences result in the machine ending up in state idle. This is probably
reasonable behavior, alowing the machine to recover. Had we left the else transitions implicit, we
would likely have ended up with less reasonable behavior. Use your judgment in deciding whether
or not to explicitly include else transitions.

3.2.2 Updatetable

An aternative way to describe afinite state machine is by an update table. Thisissimply atabular
representation of the state transition diagram.

For the diagram of figure 3.1, the table is shown in figure 3.3. The first column lists the current
state. The remaining columns list the next state and the output for each of the possible inputs.

Thefirst row, for example, corresponds to the current state idle. If the input isring, the next state is
count1 and the output is absent. Under any of the other inputs, the state remainsidle and the output
remains absent.

Types of State Machines

The type of state machines introduced in this section are known as Mealy machines, after G. H.
Mealy, who studied them in 1955. Their distinguishing feature is that outputs are associated with
state transitions. That is, when atransition is taken, an output is produced. Alternatively, we could
have associated outputs with states, resulting in amodel known as M oore machines, after F. Moore,
who studied them in 1956. In a Moore machine, an output is produced while the machine isin a

3.2. FINITE STATE MACHINES 75

current (next state, output) under specified input
state ring | offhook | end greeting | end message | absent
idle (countl, (idle, (idle, (idle, (idle,
absent) absent) | absent) absent) absent)
countl (count2, (idle, (idle, (idle, (countl,
absent) absent) | absent) absent) absent)
count2 (play greeting, | (idle, (idle, (idle, (count2,
answer) absent) | absent) absent) absent)
play greeting | (idle, (idle, (recording, | (idle, (play greeting,
absent) absent) | record) absent) absent)
recording (idle, (idle, (idle, (idle, (recording,
recorded) absent) | recorded) recorded) absent)

Figure 3.3: Update table for the telephone answering machine specifies
next state and current output as a function of current state and current input.

particular state. Mealy machines turn out to be more useful when they are composed synchronously,
aswe will do in the next chapter. Thisis the reason that we choose this variant of the model.

It is important to realize that state machine models, like most models, are not unique. A great
deal of engineering judgment goes into a picture like figure3.1, and two engineers might come up
with very different pictures for what they believe to be the same system. Often, the differences
are in the amount of detail shown. One picture may show the operation of a system in more detail
than another. The less detailed picture is called an abstraction of the more detailed picture. Also
likely are differences in the names chosen for states, inputs and outputs, and even in the meaning
of the inputs and outputs. There may be differences in how the machine responds to exceptional
circumstances (input sequences that are not expected). For example, what should the answering
machine do if it gets the input sequence (ring, end greeting, end message)? This probably reflects a
malfunction in the system. In figure 3.1, the reaction to this sequence is easy to see: the machine
ends up in the idle state.

Given these likely differences, it becomes important to be able to talk about abstraction relations
and equivalence relations between state machine models. Thisturns out to be afairly sophisticated
topic, one that we touch upon below in section 3.3.

The meaning of state

We discussed three equivalent ways of describing a state machine: sets and functions, the state tran-
sition diagram, and the update table. These descriptions have complementary uses. The table makes
obvious the sparsity of outputs in the answering machine example. The table and the diagrams are
both useful for a human studying the system to follow its behavior in different circumstances. The
sets and functions and the table are useful for building the state machine in hardware or software.

76 CHAPTER 3. STATE-SPACEMODELS

The sets and functions description is also useful for mathematical analysis.

Of course, the tables and the transition diagram can be used only if there are finitely many states
and finitely many inputs and outputs, i.e. if the sets States, Inputs, andOutputs are finite. The sets
and functions description is often equally comfortable with finite and infinite state spaces. We will
discuss infinite-state systems in chapter 5.

Like any state machine, the telephone answering machine is a state-deter mined system. Once we
know its current state, we can tell what its future behavior isfor any future inputs. We do not need to
know what inputs in the past led to the current state in order to predict how the system will behave
in the future. In this sense we can say the current state of the system summarizes the past history of
the system. Thisis, in fact, the key intuitive notion of state.

The number of states equals the number of patterns we need to summarize the past history. If thisis
intrinsicaly finite, then afinite-state model exists for the system. If it isintrinsically infinite, then
no finite-state model exists. We can often determine which of these two situations applies using
simple intuition. We can also show that a system has afinite-state model by finding one. Showing
that a system does not have afinite-state model is a bit more challenging.

Example 3.5; Consider the example of a system called CodeRecognizer whose input
and output signals are binary sequences (with arbitrarily inserted stuttering elements,
which have no effect). The system outputs recognize at the end of every subseguence
1100 in the input, and otherwise it outputs absent. If the input x is given by a sequence

then, if none of the inputs is absent,

(3.7)

| recognize if (z(n —3),z(n —2),z(n —1),2(n)) =(1,1,0,0)
y(n) = absent otherwise

Intuitively, in order to determine y(n), it is enough to know whether the previous pat-
tern of (non-absent) inputs is 0, 1, 11, 110, 1100. If this intuition is correct, we can
implement CodeRecognizer by a state machine with five states that remember the pat-
terns O, 1, 11, 110, 1100. The machine of figure3.4 does the job. The fact that we have
afinite-state machine model of this system shows that thisis a finite-state system.

The relationship in this example between the number of states and the number of input patterns that
need to be stored suggests how to construct functions mapping input sequences to output sequences
that cannot be realized by finite state machines. Here is a particularly simple example of such a
function called Equal.

3.2. FINITE STATE MACHINES

{0}

{1}

{0}

Figure 3.4: A machine that implements CodeRecognizer. It outputs
recognize at the end of every input subsequence 1100, otherwise it out-
puts absent.

Example 3.6: Theinput and output signals of Equal are binary sequences (again with
stuttering elements arbitrarily inserted). At each step, Equal outputs 1 if the previous
inputs contain an equal number of 0's and 1's; otherwise Equal outputs O. If the input
sequence z is the sequence (z(0), z(1), - - -), then the output y = F'(z) is given by

_J equal if number of I'ssameas0’'sinz(0),---,z(n)
vn €N, y(n) = { notEqual otherwise

(39)

Intuitively, in order to realize Equal, the machine must remember the difference be-
tween the number of 1's and 0's that have occurred in the past. Since these numbers
can be arbitrarily large, the machine must have infinite memory, and so Equal cannot
be realized by afinite-state machine.

We give a mathematical argument to show that Equal cannot be realized by any finite-
state machine. The argument uses contradiction.

Suppose that a machine with N states realizes Equal. Consider an input sequence that
beginswith N 1's, (1,---,1,2(N), - - -). Let the state response be

(5(0)7 5(1)7 U 75(N)7 o)

Sincethere are only NV distinct states, and the state response is of length at least NV + 1,
the state response must visit at least one state twice. Call that state . Suppose s(m) =
s(n) = a, with m < n. Then the two sequences 1™0™ and 1"0™ must lead to the
same state, hence yield the same last output on entering state ¢ But the last output
for 10™ should be equal, and the last output for 1"0™ should be notEqual, which is
a contradiction. So our hypothesis that a finite-state machine realizes Equal must be
wrong! Exercise 6 asks you to construct an infinite state machine that realizes Equal.

“Recall that 1™ means a sequence of m consecutive 1's, similarly for 0™.

78 CHAPTER 3. STATE-SPACEMODELS

{13/1
{0}/ t {0,1}/1
{0}/0

Figure 3.5: A simple nondeterministic state machine.
3.3 Nondeterministic state machines

There are situations in which it is sufficient to give an incomplete model of a system. Such models
are more compact than complete models because they hide inessentia details. This compactness
will often make them easier to understand.

A useful form of incomplete model is anondeter ministic state machine. A nondeterministic state
machine often has fewer states and transitions than would be required by a complete model. The
state machines we have studied so far are deterministic.

3.3.1 Statetransition diagram

The state transition diagram for a state machine has one bubble for each state and one arc for
each state transition. Nondeterministic machines are no different. Each arc is labeled with by
“guard/output,” where

guard C Inputs.

In adeterministic machine, the guards on arcs emerging from any given state are mutually exclusive.
That is, they have no common elements. This is precisely what makes the machine deterministic.
For nondeterministic machines, we relax this constraint. Guards can overlap. Thus, a given in-
put value may appear in the guard of more than one transition, which means that more than one
transition can be taken when that input arrives. Thisis precisely what makes the machine nondeter-
ministic.

Example 3.7: Consider the state machine shown in figure3.5. It beginsin state a and
transitions to state b the first time it encounters a 1 on the input. It then staysin state b
arbitrarily long. If it receives al at the input, it must stay in state b. If it receives a0,
then it can either stay in b or transition to a. Given the input sequence

071707170717'”
then the following are all possible state responses and output sequences:

avavbvaabaaaba"'
071707170717"'

3.3. NONDETERMINISTIC STATE MACHINES 79

a7a7b7b7b7a7b7”'
0,1,1,1,0,1,---

a7a7b7b7b7b7b7”'
071717171717"'

avavbvaababvbv"'
071707171717"'

Nondeterminism can be used to construct an abstraction of a complicated machine, which is a
simpler machine that has all the behaviors of the more complicated machine.

Example 3.8: Consider again the 60-minute parking meter. Itsinput alphabet is
Inputs = {coin5, coin25, tick, absent }.

Upon arrival of coin5, the parking meter increments its count by five, up to amaximum
of 60 minutes. Upon arrival of coin25, it increments its count by 25, again up to amax-
imum of 60. Upon arrival of tick, it decrements its count by one, down to a minimum
of zero.

A deterministic state machine model is illustrated schematically in figure3.6(a). The
state spaceis
Sates = {0,1,---,60},

which is too many states to draw conveniently. Thus, patterns in the state space are
suggested with ellipsis “- - -”.

Suppose that we are interested in modeling the interaction between this parking meter
and a police officer. The police officer does not care what state the parking meter is
in, except to determine whether the meter has expired or not. Thus, we need only two
nonstuttering outputs, so

Outputs = {safe, expired, absent }.

The value expired is produced whenever the machine enters state O.

The model has enough states that afull state transition diagram is tedious and complex
enough that it might not be useful for generating insight about the design. Moreover,
the detail that is modeled may not add insight about the interaction with apolice officer.

Figure 3.6(b) isanondeterministic model of the same parking meter. It has three states,
States = {0, 1, more}.

The inputs coin5 and coin25 in state 0 or 1 cause atransition to state more. The input
tick in state more nondeterministically moves the state to 1 or leaves it in more.

80 CHAPTER 3. STATE-SPACEMODELS

{coin25} /safe {coin25} /safe

{coinS} {coin2sp {coins,
/safe

{coin5}/ Jsafe coin25}/safe

safe

{tick}/

in5} /saf
expired { coin5}/safe

{coin5}/safe

{tick} /expired {tick} /expired {tick} /expired {tick}/expired
@

{coin5, coin25} / safe

{coin5, coin25, tick} /
safe

{tick}/
expired

{coin5, coin25} /

{tick} /expired {tick} /safe

(b)

Figure 3.6: Deterministic and nondeterministic models for a 60 minute park-
ing meter.

3.3. NONDETERMINISTIC STATE MACHINES 81

The top state machine has more detail than the bottom machine. Shortly, we will give
a precise meaning to the phrase ‘has more detail’ using the concept of simulation. For
the moment, note that the bottom machine can generate any output sequence that the
top machine generates, for the same input sequence. But the bottom machine can aso
generate output sequences that the top machine cannot. For example, the sequence

(expired, safe, safe, expired, - - -,

in which there are two safe outputs between two expired outputsis not apossible output
sequence of thetop machine, but it isapossible output sequence of the bottom machine.
In the top machine, successive expired outputs must be separated by O or at least five
safe outputs. This detail is not captured by the bottom machine. Indeed, in modeling
the interaction with a police officer, this detail may not be important, so omitting it may
be entirely appropriate.

The machines that we design and build, including parking meters, are usually deterministic. How-
ever, the state space of these machines is often very large, much larger than in this example, and
it can be difficult to understand their behavior. We use simpler nondeterministic machine models
that hide inessential details of the deterministic machine. The analysis of the simpler model reveals
some properties, but not al properties, of the more complex machine. The art, of course, is in
choosing the model that reveals the properties of interest.

3.3.2 Setsand functions model

The state machines we have been studying, with definitions of the form @.1), are deterministic. If
we know the initial state and the input sequence, then the entire state trgjectory and output sequence
can be determined. This is because any current state s and current input « uniquely determine the
next state and output (¢, y) = update(s, x).

In anondeterministic state machine, the next state is not completely determined by the current state
and input. For a given current state s and input x, there may be more than one next state. So it
no longer makes sense to characterize the machine by the function update(s, =) because there isno
single next state. Instead, we define a function possibleUpdates so that possibleUpdates(s, x) isthe
set of possible next states and outputs. Whereas a deterministic machine has update function

update: Sates x Inputs — States x Outputs,
anondeterministic machine has a (nondeterministic) state transition function
possibleUpdates: Sates x Inputs — P(Sates x Outputs), (3.9

where P(Sate x Outputs) isthe power set of Sates x Outputs. Recall that the power set is the set
of all subsets. That is, any subset of States x Outputsis an element of P(Sates x Outputs).

In order for a nondeterministic machine to be receptive, it is necessary that

V s € Sates, z € Inputs possibleUpdates(s, z) # ().

82 CHAPTER 3. STATE-SPACEMODELS

Recall that a receptive machine accepts any input value in any state, makes a state transition (possi-
bly back to the same state), and produces an output. That is, there is no situation where the reaction
to an input is not defined.

Operationally, a nondeterministic machine involves arbitrarily selecting from among the possible
next states given a current state and an input. The model says nothing about how the selection is
made.

Similar to deterministic machines, we can collect the specification of a nondeterministic state ma-
chineinto a5-tuple

SateMachine = (Sates, Inputs, Outputs, possibleUpdates, initial Sate). (3.10)

The possibleUpdates function is different from the update function of a deterministic machine.

Deterministic state machines of the form (3.1) are a specia case of nondeterministic machines in
which possibleUpdates(s, «) consists of a single element, namely update(s,). In other words,

possibleUpdates(s, x) = {update(s, z)}.

Thus, any deterministic machine, as well as any nondeterministic machine, can be given by 3.10).

In the nondeterministic machine of (3.10), a single input sequence may give rise to many state re-
sponses and output sequences. If z(0), z(1), z(2), - - - isan input sequence, then s(0), s(1), s(2), - - -
isa(possible) state trajectory and y(0), y(1),y(2), - - - isa(possible) output sequence provided that
s(0) = initialSate
Vn >0, (s(n+1),y(n)) € possibleUpdates(s(n),z(n)).

A deterministic machine defines a function from an input sequence to an output sequence,
F: InputSignals — OutputSignals,

where
InputSignals = [Nats) — Inputs],

and
OutputSignals = [Natsgy — Outputs].

We define a behavior of the machine to be a pair (z,y) such that y = F(x), i.e.,, a behavior is
possible input, output pair. A deterministic machine is such that for each = € InputSgnals, thereis
exactly one y € OutputSgnals such that (z,y) isabehavior.

We define the set
Behaviors C InputSgnals x OutputSgnals, (3.11)

where

Behaviors =
{(z,y) € InputSgnals x OutputSignals | y is apossible output sequence for input = }.

34. SIMULATION AND BISIMULATION 83

{1}/0 {131 {1}/0
{1}/1 {1}/0 {1}/1
(a)
{1}/0 {1}/0
m 13/1
{1}/1
(b) ()

Figure 3.7: Three state machines where (a) and (b) simulate one another
and (c) simulates (a) and (b).

The set Behaviors is the graph of the function F.

For a nondeterministic machine, for each © € InputSgnals, there may be more than one y €
OutputSignals such that (z,y) isabehavior. The set Behaviors, therefore, is no longer the graph of
afunction. Instead, it defines arelation, which is a generalization of a function where there can be
two or more distinct elements that share the same element in the domain. Its interpretation is still
simple, however. If (z,y) € Behaviors, then input = may produce output y.

3.4 Simulation and bissmulation

Two state machines that have the same input and output alphabets may have related behaviors.
Suppose for example that given the same input sequence, they produce the same output sequence.
They may be very different state machines and still be equivalent in this sense.

Example 3.9: Consider the three state machines in figure 3.7, where the input and
output alphabets are
Inputs = {1, absent} and Outputs = {0, 1, absent }.

Machine (a) isthe most complicated, inthat it hasthe most states. However, its behavior
isidentical to that of the state machine in (b). Both machines produce an alternating

84 CHAPTER 3. STATE-SPACEMODELS

sequence of 0 and 1 each time they receive a 1 at the input. The machine in (a) is
nondeterministic: for example, from state 1 it can move under input 1 to state O or state
2). Yet itsinput/output behavior isidentica to that of the deterministic machine in (b).

The nondeterministic machine in (c) is capable of behaving like those in (a) and (b).
That is, it can produce an alternating sequence of 0 and 1. However, it can also produce
other output sequences that neither (a) nor (b) can produce. It is, in this sense, more
general, or more abstract, than the machinesin (a) and (b).

To study the relationships between the machines in figure3.7 we introduce the concepts of simula-
tion and bisimulation. The machinein (c) issaid to smulate (b) and (a). The machinein (b) issaid
to bismulate (a), or to be bisimilar to (a). Bisimulation can be viewed as a form of equivaence
between state machines. Simulation can be viewed as aform of abstraction of state machines.

Example 3.10: In figure 3.6, the bottom machine can generate any output sequence
that the top machine generates, for the same input sequence. The reverse is not true;
there are output sequences that the bottom machine can generate that the top machine
cannot. The bottom machine is an abstraction of the top one.

We will see that the bottom machine simulates the top machine (but not vice versa).

To understand simulation, it is easiest to consider a“matching” game between one machine and the
other, more abstract, machine that simulates the first. The game starts with both machines in their
initial states. The first machine is allowed to react to an input. If this machine is nondeterministic,
it may have more than one possible reaction; it is permitted to choose any one of these reactions.
The second, more abstract, machine must react to the same input such that it produces the same
output. If it is non-deterministic, it is free to pick from among the possible reactions any one that
matches the output of the first machine. The second machine “wins’ this matching game if it can
aways match the output of the first machine. We then say that the second machine simulates the
first one. If the first machine can produce an output that the second one cannot match, then the
second machine does not simulate the first machine.

Example 3.11: Suppose we wish to determine whether (c) simulates (b) in figure3.7.
The game starts with the two machines in their initial states, which we jointly denote
by the pair

so = (0and2,0to3) € Sates, x ates..

Machine (b) (the one being simulated) moves first. Given an input, it reacts. If it is
nondeterministic, then it is free to react in any way possible, although in this case, (b)
is deterministic, so it will have only one possible reaction. Machine (c) then has to
match the move taken by (b); given the same input, it must react such that it produces
the same output.

There are two possible inputs to machine (b), 1 and absent. If the input is absent, the
machine reacts by stuttering. Machine (c) can match this by stuttering as well. For this
example, it will always to match stuttering moves, so we will not consider them further.

34. SIMULATION AND BISIMULATION 85

Excluding the stuttering input, there is only one possible input to machine (b), 1. The
machine reacts by producing the output 0 and changing to state 1and3. Machine ()
can match this by taking one of the two possible transitions out of its current state, the
one that produces output 0. The resulting states of the two machines are denoted

s1 = (1and3, 0to3) € States, x States..

From here, again there isonly one non-stuttering input possible, so (b) reacts by moving
back to 0Oand3 and producing the output 1. Again, (c) can match this by choosing the
transition that produces 1. The resulting states are s, back where we started.

The “winning” strategy of the second machine can be summarized by the set

Spe = {s0,51} C States, x States..

The set Sy, . in the previous example is called asimulation relation; it shows how (c) simulates (b).
A simulation relation associates states of the two machines. Suppose we have two state machines,
X and Y, which may be deterministic or nondeterministic. Let

X = (Satesy, Inputs, Outputs, possibleUpdatesy, initial Satey),

and
Y = (Satesy, Inputs, Outputs, possibleUpdates,-, initial Satey).

Notice that the two machines have the same input and output a phabets. If either machine is deter-
ministic, then its possibleUpdates function always returns a set with only one element in it.

If Y simulates X, the simulation relation is given as a subset of Satesy x Satesy. Note the
ordering here; the machine that moves first in the game, X, the one being simulated, is first in
Satesy x Satesy .

To consider the reverse scenario, if X simulates Y, then therelation is given as a subset of States- x
Satesy . In thisversion of the game Y must move first.

If we can find simulation relations in both directions, then the machines are bisimilar.
We can state the “winning” strategy mathematically. We say that Y simulates X if there is a subset
S C Satesy x Satesy such that

1. (initialSatey, initialSatey') € S, and

2. If (sx,sy) € S,thenV = € Inputs, and ¥ (s, yx) € possibleUpdatesy (sx,), thereisa
(s, yy) € possibleUpdates,(sy, =) such that:

@ (sy.s}) € S, and

(b) yx = yy.

This set S, if it exists, is called the simulation relation. It establishes a correspondence between
states in the two machines.

86 CHAPTER 3. STATE-SPACEMODELS

Example 3.12: Consider again the state machines in figure3.7. The machine in (b)
simulates the one in (a). The simulation relation is a subset

Sap C {0,1,2,3} x {O0and2, 1and3}.

The names of the states in (b) (which are arbitrary) are suggestive of the appropriate
simulation relation. Specifically,

Sap = {(0,0and2), (1, 1land3), (2, 0and2), (3, 1land3)}.

The first condition of a simulation relation, that the initial states match, is satisfied
because (0,0and2) € S, ;. The second condition can be tested by playing the game,
but starting in each pair of statesin S, ;.

Start with the two machines in one pair of states in S, ;, such as the initial states
(0,0and2). Then consider the moves that machine (a) can make in a reaction. |g-
noring stuttering, if we start with (0, 0and2), (a) must move to state 1 (given input 1).
Given the same input, can (b) match the move? To match the move, it must react to the
same input, produce the same output, and move to a state so that the new state of (a)
paired with the new state of (b) isin S, ;.

Indeed, (b) can match either of the moves (a) can take from state 0. It is easy (albeit
somewhat tedious) to check that this matching can be done from any starting point in
Sab

The above example shows how to use the gameto check that a particular subset of States; x Satesy
isasimulation relation. Thus, the game can be used either to construct a simulation relation or to
check whether a particular set is asimulation relation.

For the examples in figure 3.7, we have shown that (¢) simulates (b) and that (b) simulates (a).
Simulation is transitive, meaning that we can immediately conclude that (c) simulates (a). In
particular, if we are given simulation relations S, , C States, x States, ((b) simulates (a)) and
Sp,e C States, x States. ((c) simulates (b)), then

Sa,c = {(8a, 5¢) € Sates, x Sates, | there exists s, € S, where (sq, sp) € Sqp @ (5p, 5¢) € Spc}
(3.12)
is the simulation relation showing that (¢) simulates (a).

Example 3.13: For the examplesin figure 3.7, we have aready determined
Sap = {(0,0and2), (1, 1land3), (2, 0and2), (3, 1and3)}.

and
Spc = {(0and2, 0to3), (1and3, Oto3) }.

From (3.12) we can conclude that
Sa,c = {(0,0t03), (1, 0to3), (2, 0to3), (3, 0to3) },

which further supports the suggestive choices of state names.

34. SIMULATION AND BISIMULATION 87
Simulation relations are not (necessarily) symmetric.

Example 3.14: For the examples in figure 3.7, (b) does not simulate (c). To see this,
we can attempt to construct a simulation relation by playing the game. Starting in the
initial states,
so = (0to3, 0and2),

we allow (c) to movefirst. Presented with a nonstuttering input, 1, it has two choices of
moves. One of these, which produces an output 0O, (b) can match. However, the other
move, which produces the output 1, (b) cannot match. In this state, (b) has no way to
produce the output 1. Thus, the game gets stuck, and we fail to construct a simulation
relation.

Although simulation relations are not necessarily symmetric, it is possible to have two state ma-
chines that simulate each other. Obvioudly, if the two machines are identical, they simulate each
other. But they may simulate each other even if they are not identical.

Example 3.15: In figure 3.7, not only does state machine (b) simulate (a), but also
(a) simulates (b). We can easily verify this by determining that not only can (b) match
any move (a) makes, but (a) can match any move (b) makes. In fact, since (a) is non-
deterministic, in two of its states it has two distinct ways of matching the moves of (b).
Since it moves second, it can arbitrarily choose from among these possibilities.

If from state 1 it aways chooses to return to state 0, then the simulation relation is
Spo = {(0and2,0), (1land3,1)}.

Otherwise, if from state 2 it aways chooses to return to state 1, then the simulation
relation is
Spe = {(0and2,0), (1and3, 1), (Oand2, 2)}.

Otherwise, the ssimulation relation is
Spe = {(0and2,0), (1and3, 1), (0Oand2, 2), (1land3, 3)}.

Thus, the simulation relation is not unique.

When simulation is bidirectional, the relationship is called bisimulation. The machines are said
to be bisimilar. This is a rather strong form of equivalence. Usually, any state machine may be
replaced by abisimilar state machine. Thus, the machine in (a) may be replaced by the ssmpler one
in (b).

A common use of simulation is to establish a relationship between a more abstract model and a
more detailed model. In the example above, (c) is a more abstract model of either (b) or (a). Itis
more abstract in the sense that it |oses detail. For example, it haslost the property that 0’'sand 1's al-
ternate in the output sequence. We now give a more compelling example of such abstraction, where
the abstraction dramatically reduces the number of states while still preserving some properties of
interest.

88 CHAPTER 3. STATE-SPACEMODELS

Example 3.16: In the case of the parking meter, the bottom machine in figure 3.6
simulates the top machine. Let A denote the top machine, and let B denote the bottom
machine. We will now identify the simulation relation.

The simulation relation isasubset S C {0,1,---,60} x {0,1, more}. It isintuitively
clear that 0 and 1 of the bottom machine correspond to 0 and 1, respectively, of the top
machine. Thus, (0,0) € S and (1,1) € S. Itisalso intuitive that more corresponds
to al of the remaining states 2, - - - 60 of the top machine. So we propose to define the
simulation relation as

S = {(0,0), (1,1)} U {(s4, more) | 2 < s4 < 60} (3.13)

We now check that S isindeed asimulation relation, as defined above.

The first condition of a simulation relation, that the initial states match, is satisfied
because (0,0) € S. The second condition is more tedious to verify. It says that for
each pair of states in .S, and for each input, the two machines can transition to a pair
of new states that isalso in .S, and that these two transitions produce the same output.
Since machine A is deterministic, there is no choice about which transition it takes and
which output it produces. In machine B, there are choices, but all we require is that
one of the choices match.

The only state of machine B that actually offers choices is more. Upon receiving tick,
the machine can transition back to more or down to 1. In either case, the output is
safe. It is easy to see that these two choices are sufficient for state more to match states
2,3, ...60 of machine A.

Thus the bottom machine indeed simulates the top machine with the simulation relation
(3.13).

3.4.1 Relating behaviors

A simulation relation establishes a correspondence between two state machines, one of which is
typically much simpler than the other. The relation lends confidence that analyzing the simpler
machine indeed reveals properties of the more complicated machine.

This confidence rests on a theorem and corollary that we will develop in this section. These results
relate the input/output behaviors of state machines that are related by simulation.

Given an input sequence x = (z(0),z(1),z(2),---), if a state machine can produce the output
sequence y = (y(0),y(1),y(2),---), then (z,y) issaid to be abehavior of the state machine. The
set of all behaviors of a state machine obviously satisfies

Behaviors C InputSignals x OutputSgnals.

Theorem Let B ssimulate A. Then

Behaviors, C Behaviorsg.

34. SIMULATION AND BISIMULATION 89

This theorem is easy to prove. Consider a behavior (z,y) € Behaviorsy. We need to show that
(z,y) € Behaviorsg.

Let the simulation relation be S. Find all possible state responses for A

sS4 = (SA(O), 8,4(1), .-)

that result in behavior (x,y). (If A isdeterministic, then there will be only one.) The simulation
relation assures us that we can find a state response for B

sp = (sB(0),s5(1),)
where (s (i), sp(i)) € S, such that given input =, B produces y. Thus, (z,y) € Behaviorss.

Intuitively, the theorem simply states that B can match every move of A and produce the same
output sequence. It also impliesthat if B cannot produce a particular output sequence, then neither
can A. Thisis stated formally in the following corollary.

Corollary Let B simulate A. Then if
(z,y) ¢ Behaviorsp

then
(x,y) ¢ Behaviorsy.

The theorem and corollary are useful for analysis. The genera approach is as follows. We have
a deterministic state machine A. We wish to show that its input-output function satisfies some
property. That is, every behavior satisfies some condition. We construct a simpler nondeterministic
machine B whose input-output relation satisfies the same property, where B simulates A. The
theorem guarantees that A will satisfy this property, too. That is, since al behaviors of B satisfy the
property, all behaviors of A must also. Thistechnique isuseful sinceit is often easier to understand
asimple FSM than a complex FSM with many states.

Conversely, if thereis some property that we must assure that no behavior of A has, it issufficient to
show that no behavior of the smpler machine B hasit. Thisscenario istypical of asafety problem,
where we must show that dangerous outputs from our system are not possible.

Example 3.17: For the parking meter of figure 3.6, for example, we can use the
nondeterministic machine to show that if acoin isinserted at step n, the output at steps
n andn + 1 is safe. By the corallary, it is sufficient to show that the nondeterministic
machine cannot do any differently.

It is important to understand what the theorem says, and what it does not say. It does not say, for
example, that if Behaviorsy C Behaviorsg then B simulates A. In fact, this statement is not true.
Consider the two machines in figure 3.8, where

Inputs = {1, absent},

90

CHAPTER 3. STATE-SPACEMODELS

Figure 3.8: Two state machines with the same behaviors that are not bisim-
ilar.

34. SIMULATION AND BISIMULATION 91

Outputs = {0, 1, absent }.

These two machines have the same behaviors. The non-stuttering outputs are (1,0) or (1, 1), se-
lected nondeterministically, assuming the input sequence has at least two non-stuttering elements.
However, they are not bisimilar. In particular, (b) does not simulate (a). To see this, we play the
matching game. Machine (a) is allowed to move first. Ignoring stuttering, it has no choice but to
move from a to b and produce output 1. Machine (b) can match this two ways; it has no basis
upon which to prefer one way to match it over another, so it picks one, say moving to state f. Now
it is the turn of machine (a), which has two choices. If it choses to move to d, then machine (b)
cannot match its move. (A similar argument worksiif (b) picks state /.) Thus, machine (b) does not
simulate machine (a), despite the fact that Behaviors, C Behaviorsg.®

Exercises

In some of the following exercises you are asked to design state machines that carry out a given
task. Thedesign issimple and elegant if the state space is properly chosen. Although the state space
isnot unique, there often is a natural choice. Asusual, each problem is annotated with the letter E,
T, C which stands for exercise, requires some thought, requires some conceptualization. Problems
labeled E are usually mechanical, those labeled T require a plan of attack, those labeled C usually
have more than one defensible answer.

1. E A state machine with
Inputs = {a, b, ¢, d, absent},

has a state s with two emerging arcs with guards
guardl = {a}

and
guard2 = {a,b,d}.

(@) Isthis state machine deterministic?

(b) Define the set else for state s and specify the source and destination state for the else
arc.

2. E For the answering machine example of figure3.1, assume the input is
(offhook, offhook, ring, offhook, ring, ring, ring, offhook, - - -).

This corresponds to a user of the answering machine making two phone calls, answering a
third after the first ring, and answering a second after the third ring.

() Give the state response of the answering machine.
(b) Givethetrace of the answering machine.

SRecall that in our notation C allows the two sets to be equal.

92 CHAPTER 3. STATE-SPACEMODELS

(c) Givethe output.

3. E Consider the alphabets
Inputs = Outputs = Bin = {0, 1}.

(8 Construct a state machine that uses these aphabets such that if =(0),z(1),--- isany
input sequence, the output sequence is

V n € Natsy,

1 iftn>2A(z(n—2),z(n—1),z(n)) =(1,1,1)
() =90 otherwise

In words, the machine outputs 1 if the three previous inputs are al 1's, otherwise it
outputs 0.

(b) For the same input and output aphabet, construct a state machine that outputs 1 if the
three previous inputs are either (1,1, 1) or (1,0, 1), and otherwise it outputs O.

4. E A modulo N counter is a device that can output any integer between O and N — 1. The
device has three inputs, increment, decrement, and reset, plus, as always, a stuttering element
absent; increment increases the output integer by 1; decrement decreases this integer by 1;
and reset sets the output to 0. Here increment and decrement are modulo N operations.

Note: Modulo N numbers work as follows. For any integer m, m mod N = k where
0 < k < N — 1istheunique integer such that N divides (m — k). Thus there are only N
distinct modulo-N numbers, namely, 0,---, N — 1.

() Givethe state transition diagram of this counter for N = 4.
(b) Givethe update table of this counter for N = 4.

(c) Give a description of the state machine by specifying the five entities that appear in
(3.1); again assume N = 4.

(d) Take N = 3. Calculate the state response for the input sequence
increment*, decrement?, - - -
starting with initial state 1, where s means s repeated n times.

5. T The state machine UnitDelay is defined to behave as follows. On the first non-stuttering
reaction (when the first non-stuttering input arrives), the output « is produced. On subsequent
reactions (when subsequent inputs arrive), the input that arrived at the previous non-stuttering
reaction is produced as an output.

(&) Assume the input and output al phabets are
Inputs = Outputs = {a, b, c, absent }.

Give a finite state machine that implements UnitDelay for this input set. Give both a
state transition diagram and a definition of each of the componentsin @.1).

34. SIMULATION AND BISIMULATION 93

10.

11

{1}/0 {11 {1311
‘t’t’ ‘ "
{0}/1 {0}/1 {o}y/1

Figure 3.9: Machine that outputs at least one 1 between any two 0's.

(b) Assume the input and output set is
Inputs = NatsU {absent },

and that on the first non-stuttering reaction, the machine produces 0 instead of a. Give
an (informal) argument that no finite state machine can implement UnitDelay for this
input set. Give an infinite state machine by defining each of the componentsin @.1).

. T Construct an infinite state machine that realizes Equal.

C An devator connects two floors, 1 and 2. It can go up (if it is on floor 1), down (if it is
on floor 2) and stop on either floor. Passengers at any floor may press a button requesting
service. Design a controller for the elevator so that (1) every request is served, and (2) if
thereis no pending request, the elevator is stopped. For simplicity, do not be concerned about
responding to requests from passengers inside the elevator.

T The state machine in figure 3.9 has the property that it outputs at least one 1 between
any two 0's. Construct a two-state nondeterministic state machine that simulates this one and
preserves that property.

T For the nondeterministic state machine in figure3.10 the input and output a phabets are

Inputs = Outputs = {0, 1, absent }.

(a) Define the possibleUpdates function (3.9) for this state machine.

(b) Definetherelation Behaviorsin (3.11) for this state machine. Part of the challenge here
isto find away to describe this relation compactly. For smplicity, ignore stuttering; i.e.
assume the input is never absent.

E The state machine in figure 3.11 implements CodeRecognizer, but has more states than the
oneinfigure 3.4. Show that it is equivalent by giving abisimulation relation with the machine
in figure 3.4.

. E The state machine in figure 3.12 has input and output alphabets

Inputs = {1, a},

94 CHAPTER 3. STATE-SPACEMODELS

0}/0
‘ {0,13/0

{13/0

{0,13/1

Figure 3.10: Nondeterministic state machine for exercise 9.

{0}
{1} {1}

{0}

{ O} /recognize

{0}

Figure 3.11: A machine that implements CodeRecognizer, but has more
states than the one in figure 3.4.

34. SIMULATION AND BISIMULATION 95

Figure 3.13: A machine that has more states than it needs.

Outputs = {0, 1, a},

where a (short for absent) is the stuttering element. State whether each of the following isin

the set Behaviors for this machine. In each of the following, the ellipsis“- - -” means that the
last element is repeated forever. Also, in each case, the input and output signals are given as
sequences.

(a) ((1717171717"')7(0717170 0))

(b) ((1717171717”')7(07171 O a,))

(C) ((aal’a’laau"')’(a 1 a, 0 a,))

(d) ((1’171’171"")’(000’0’0"“))

(e) ((1’171’171"")’(0’a’oaaaaa"'))

12. E The state machine in figure3.13 has
Inputs = {1, absent },
Outputs = {0, 1, absent }.
Find abisimilar state machine with only two states, and give the bisimulation relation.
13. E You aretold that state machine A has
Inputs = {1, 2, absent },

Outputs = {1, 2, absent},

96

CHAPTER 3. STATE-SPACEMODELS

Sates = {a, b, c,d}.

but you are told nothing further. Do you have enough information to construct a state machine
B that simulates A? If so, give such a state machine, and the simulation relation.

Chapter 4

Composing State Machines

Design of interesting systems involves composing components. Their complexity is built up out of
simpler parts. Since systems are functions, their composition is function composition, as discussed
above in section 2.1.5. State machines, however, are not given directly as functions, so composing
them is not totally trivial. The state machine model, however, is amenable to composition, in the
sense that we can define a new state machine from a composition of simpler ones. That is the topic
of this chapter.

In section 2.3.4 we used a block diagram syntax to define compositions of systems. We will use the
same syntax here. In that section, we saw that feedback compositions have a more subtle meaning
than those without feedback. We will encounter similar subtlety with feedback compositions of
state machines.

4.1 Synchrony

Consider a set of interconnected components, where each component is a state machine. By “in-
terconnected” we mean that the outputs of one component may be inputs of another. We wish to
construct a state machine model for the composition of components. We choose a particular style
of interconnection called synchrony. This style dictates that each state machine in the composition
reacts simultaneously and instantaneously. Thus, areaction of the composite machine consists of a
set of simultaneous reactions of each of the component machines.

A reaction of the composite machine is triggered by inputs. Thus, when a reaction occurs is ex-
ternally determined, not determined by the composite machine itself. Thisis the same as a single
machine. Even the stuttering element of the input alphabet is provided externally. The environ-
ment provides absent at the input, for example, and demands a reaction when the state machine is
composed with another machine, and a reaction is needed from the other machine.

Such systems are said to be reactive, which means that they react at a rate determined by the
environment in which they operate. Because they are synchronous, they are often called syn-
chronoug/reactive systems.

97

98 CHAPTER 4. COMPOSING STATE MACHINES

The reactions of the component machines and of the composite are viewed as being instantaneous.
That is, a reaction does not take time. This creates some interesting subtleties. In particular, the
output from a state machine is viewed as being simultaneous with the input. We will discuss the
ramifications of thisinterpretation for each specific composition below.

Synchrony is avery useful model of the behavior of physical systems. Digital circuits, for example,
are amost always designed using the model. Circuit elements are viewed as taking no time to
calculate their outputs given their inputs, and time overal is viewed as progressing in a sequence
of discrete time steps according to ticks of a clock. Of course, the time that it takes for a circuit
element to produce an output cannot ultimately be ignored, but the model is useful because for most
circuit elements in a complex design, it can be ignored. Only the delay of those circuit elements
along acritical path affects the overall performance of the circuit.

More recently than for circuits, synchrony has come to be used in software as well. Concurrent
software modules interact according to the synchronous model. Languages built on this principle
are called synchronous languages. They are used primarily in real-time embedded systent design.

4.2 Side-by-side composition

Consider the composition of two state machines shown in figure4.1. Thisis called a side-by-side
composition. The two state machines have no interaction with one another, but nonetheless we
wish to define a single state machine representing the synchronous execution of the two component
state machines.

The state space of the composite state machine is simply
Sates = Satesy x Satesg.

(We could take the cross product in the other order, resulting in a different but bissimilar composite
state machine.) Theinitia stateis

initial State = (initialStatey, initial Yatep).

The input and output alphabets are
Inputs = Inputs, x Inputsg, (4.1)

Outputs = Outputs, x Outputsg. (4.2)

Recall that Inputs, and Inputs; include a stuttering element. This is convenient because it allows
areaction of the composite when we realy want only one of the machines to react. The composite
also has a stuttering element, which isthe pair of stuttering elements.

1An embedded system is a computing system that is not first-and-foremost a computer. For example, a cellular
telephone, which contains several on-board computers, is an embedded system. The ignition controls of recent cars are
embedded systems. In fact, most modern controllers of physical systems are embedded systems.

4.2. SIDE-BY-SIDE COMPOSITION

(States, Inputs, Outputs, update, initial State)

— > (Statesa, Inputsa, Outputsa, updates, initial Sates)

— 1y (Statesg, Inputsg, Outputsg, updateg, initial Sateg)

Definition of the composite machine:

Sates = Satesy x Satesp

Inputs = Inputs, x Inputsg

Outputs = Outputs, x Outputsg

initial State = (initialStatey, initial Satep)
update((sa, sp), (ra,2B)) = ((5:47 ‘9/B)7 (ya,yB))
where

(s’4,ya) = update, (s4,2.4) and (s’z, yp) = update(sp, zp)

Figure 4.1: Summary of side-by-side composition of state machines.

99

100 CHAPTER 4. COMPOSING STATE MACHINES

(States, Inputs, Outputs, update, initial Sate)

— > (Statesa, Inputsa, Outputsa, updates, initial Sates)

L (Statesg, Inputsg, Outputsg, updateg, initial Yateg) >

Assumptions about the component machines:
Outputs, C Inputsg

Definition of the composite machine:
Sates = Satesy x Satesp

Inputs = Inputs,

Outputs = Outputsg

initial State = (initialStatey, initial Satep)
update((SAv SB)v CC) = ((5:4’ 5,3)7 yB)
where

(8247 ZJA) = updateA(8A7 11?) and (3/B7 yB) = updateB(SBv ZJA)

Figure 4.2: Summary of cascade composition of state machines.

The update function of the composite, with this assumption, is quite smple:

update((sA, 83)7 (3?,4,32‘3)) = ((8247 S/B)v (yAayB))a
where
(s'4,y4) = update, (sa,z4),
and
(s, yp) = updateg(sp, rp).

4.3 Cascade composition

We consider two state machines shown in figure 4.2, where the output of one is the input of the
other. Thisis called a cascade composition. We wish to compose these state machines so that they

4.3. CASCADE COMPOSITION 101

react together, synchronoudly, as one state machine. This is fairly easy to do, but there are some
subtleties.

The two state machines are given by
SateMachiney = (Statesa, Inputs,, Outputs 4, update 4, initial tate,)

and
SateMachinep = (Satesg, Inputsg, Outputsy, update, initial Satep).

L et the composition be given by

StateMachine = (States, Inputs, Outputs, update, initial State).

Clearly, for acomposition like that in figure4.2 to be possible we must have
Outputs, C Inputsg.

That is, any output produced by machine A needs to be in the input alphabet for machine B. Asa
result,
OutputSgnals, C InputSgnalsg.

Thisisanalogous to atype constraint in programming languages, where in order for two pieces of
code to interact, they must use compatible data types.

We wish to construct a state machine model for this series connection. As noted in the figure, the
input alphabet of the composite is given by

Inputs = Inputs,.

The stuttering element of Inputs, of course, is just the stuttering element of Inputs,. The output
aphabet of the composite is
Outputs = Outputs;.

The state space of the composite state machine is simply
Sates = Satesy x Satesg. 4.3

This asserts that the composite state machine isin state (s4, sp) when StateMachine, isin state s 4
and SateMachineg isin state sg. Theinitial state is therefore

initial Sate = (initial Satey, initial SYatep).

Note that we could have equally well defined the states of the composite state machine in the oppo-
site order,
Sates = Satesg x Satesy.

This would result in a different but bisimilar state machine description (either one simulates the
other). Intuitively, it does not matter which of this two choices we make, so we choose @.3).

102 CHAPTER 4. COMPOSING STATE MACHINES

To compl ete the definition of the composite machine, we need to define the update function in terms
of the component machines. Here, aslight subtlety arises. Since thisis a synchronous composition,
the output of machine A is viewed as being simultaneous with its input. Thus, in a reaction, the
output of machine A in that reaction must be available to machine B in the same reaction. This
seemsintuitive, but it has some counterintuitive consequences. Although the reactions of machine A
and B are simultaneous, we must determine the reaction of A before we can determine the reaction
of B. This apparent paradox underlies most of what is interesting in synchronous composition,
and will become a major issue with feedback composition. In feedback composition, it is not
immediately evident which reactions need to be determined first.

For now, it is intuitively obvious what we need to do. First, we determine the reaction of machine
A. Assume that the current input is 2 and the current state is s = (sa, sp), where s 4 is the state of

machine A and sp isthe state of machine B. Machine A reacts by updating its state and producing
output y 4,

(s, ya) = update, (s, z). (4.4)

Its output y4 becomes the input to machine B. Thus, machine B reacts by updating its state and
producing output ¥z,

(s5,yB) = update (sg,ya). (4.5)
The output of the composite machine, of course, is just the output of machine B, and the next state
of the composite machineisjust (¢, s’3), SO

update((sa,sg),x) = ((s'4,5%),yB),

where ¢y, s’5, and yp are given by (4.4) and (4.5). The definition of the composite machine sum-
marized in figure 4.2.

Example4.1: Consider the cascade composition in figure4.3. The composite machine
has state space

and aphabets
Inputs = Outputs = {0, 1, absent }.

Theinitial stateis
initial State = (0, 0).

The update function is given by the table:

current (next state, output) for input
state 0 [1 | absent

00 | (00,0 | ((11),1) | ((0,0), absent)
01) |(©0.1) | ((11),0) | ((0.1), absent)
(109 | ((11).1) | ((9,0),0) | ((1,0), absent)
@1y (1.0 | ((00),1) | ((1,1), absent)

4.3. CASCADE COMPOSITION 103

l Inputs = { 0,1,absent}

{0}/0 ({01

DR

{1}/0

¢ {0,1,absent}

{0}/0 ({10

DR

{0}

L Outputs={0,1,absent}

Figure 4.3: Example of a cascade composition.

Note from this table, however, that states (0,1) and (1,0) are not reachable from the
initial state. A state s is said to be reachable if some sequence of inputs can take the
state machine from the initial state to s. This suggests that a ssimpler machine with
fewer states would exhibit the same input/output behavior. In fact, notice from the
table that the input is always equal to the output! Thus, atotally trivial machine would
exhibit the same input output behavior.

The ssimple behavior of the composite machine is not totally obvious from figure4.3.

We haveto systematically construct the composite machine to derive this simple behav-
ior. In fact, this composite machine can be viewed as an encoder and decoder, because
the input bit sequence is encoded by a distinctly different bit sequence (the intermedi-
ate signal in figure 4.3), and then the second machine, given the intermediate signal,
reconstructs the original.

This particular encoder is known as a differential precoder. It is“differential” in the
sense that when the input is 0, the intermediate signal sample is unchanged from the
previous sample (whether it was 0 or 1), and when theinput is 1, the sampleis changed.
Thus, theintermediate signal indicates change in the input with a1, and no change with
a0. Differential precoders are used when it isimportant that the average number of 1's
and O'sisthe same, regardless of the data that is encoded.

104 CHAPTER 4. COMPOSING STATE MACHINES

Inputsa Outputsa

—» (States, Inputs, Outputs, update, initial Sate) >

Inputsg Inputs = Inputsa % Inputsg Outputsg
3 Outputs = Outputsp x Outputsg)

Figure 4.4: State machine with product-form inputs and outputs.

4.4 Product-form inputs and outputs

In the state machine model of (3.1), at each step the environment selects one input to which the
machine reacts and produces one output. Sometimes we wish to model the fact that some input
values are selected by one part of the environment, while other input values are simultaneously
selected by another part. Similarly, some output values are sent to one part of the environment,
while other output values are simultaneously sent to another part. The product-form composition of
this section permits these models.

The machine in figure 4.1 is shown as a block with two distinct input and output arrows. The figure
suggests that the machine receives inputs from two sources and sends outputs to two destinations.
Furthermore, the two source inputs and the two destination outputs happen simultaneously. In the
answering machine example of chapter 3, for instance, the end greeting input value might originate
in a physically different piece of hardware in the machine than the offhook value.

The distinct arrows into and out of a block are called ports. Each port has a set of values called
the port alphabet associated with it, as shown in figure 4.4. Each port aphabet must include a
stuttering element. The set Inputs of input values to the state machine isthe product of the input sets
associated with the ports. Of course, the product can be constructed in any order, but each ordering
resultsin adistinct (but bisimilar) state machine model.

For example, in figure 4.4, there are two input ports and two output ports. The upper input port can
present to the state machine any value in the a phabet Inputs,, which includes absent, its stuttering
element. The lower port can present any value in the set Inputs;, which also includes absent. The
input value actually presented to the state machine in areaction is taken from the set

Inputs = Inputs, x Inputsg.

The stuttering element for this alphabet is the tuple (absent, absent). The output value produced by
areaction istaken from the set

Outputs = Outputs, x Outputsg.

If the output is (y4,y5), then the upper port shows y4 and the lower port shows yp. These can
now be separately presented as inputs to downstream state machines. Again, the stuttering element
is (absent, absent).

4.4. PRODUCT-FORM INPUTSAND OUTPUTS

kend message, absent} l {ring, offhook, albsent} kend greeting, absent}

stutter
{(absent, ring, absent)} ‘

else

{(absent, ring, absent)}

stutter

{(absent, ring, absent)}/
(answer, absent, absent)

play greeti ng

stutter

else stutter

(*,offhook,*)}
record

essage
{(end greeting,absent,absent)}/
absent, absent, record
else/(absent, recorded, absent) (absent, absent, record)

L {answer, absent}

L {recorded,
absent}

L{ record, absent}

NOTE: stutter = {(absent, absent, absent)}

Figure 4.5: Answering machine with product-form inputs and outputs.

105

106 CHAPTER 4. COMPOSING STATE MACHINES

Example 4.2: The answering machine of figure3.1 hasinput alphabet

Inputs = {ring, offhook, end greeting, end message}.

In atypical realization of an answering machine, ring and offhook come from a subsys-
tem (often an ASIC, or application-specific integrated circuit) that interfaces to the
telephone line. The value end greeting comes from a subsystem, such as a magnetic
tape machine or digital audio storage device, that plays the answer message. The value
end message comes from a similar, but distinct, subsystem that records incoming mes-
sages. So amore convenient model might show three separate factors for the inputs, as
in figure 4.5. That figure also shows the outputs in product form, anticipating that the
distinct output values will need to be sent to distinct subsystems.

Several features distinguish the diagram in figure4.5 from that of figure 3.1. First, each
state except the idle state has acquired a self-loop labeled stutter, which is a shorthand
for

stutter = (absent, absent, absent).

This self loop prevents the state machine from returning to the idle state when nothing
interesting is happening on the inputs. Usually, there will not be a reaction if nothing
interesting is happening on the inputs, but because of synchrony, this machine may
be composed with others, and all machines have to react at the same time. Thus, if
anything interesting is happening anywhere in the system, then this machine has to
react even though nothing interesting is happening here. Such a reaction is called a
stutter. The state does not change, and the output produced is the stuttering element of
the output al phabet.

Second, each guard now consists of a set of triples, since the product-form input has
three components. The shorthand “ (*, offhook, *)” on the arc from record message to
idle represents the set
{(absent, offhook, absent), (end greeting, offhook, absent),

(absent, offhook, end message), (end greeting, offhook, end message) }.
The“*” isadon’t care or wildcard notation. Anything in its position will trigger the
guard.
The outputs are also triples, but most of them are implicitly (absent, absent, absent).

4.5 General feedforward composition

Given that state machines can have product-form inputs and outputs, it is easy to construct a com-
position of state machines that has the features of both the cascade composition of figure4.2 and
the side-by-side composition of figure4.1. An exampleis shown in figure 4.6. In that figure,

Outputs, = Outputs,; x Outputs,,
Inputsy = Inputsg; x INputsg,.

4.5. GENERAL FEEDFORWARD COMPOSITION 107

(States, Inputs, Outputs, update, initial State)
Outputsay
Inputsa,
— > (Statesa, Inputsa, Outputs,, updatey, initial Staten) >
>
Outputsan
Outputsao O Inputsgy
L Outputsg
Inputsg, (Statesg, Inputsg, Outputsg, updateg, initial Sateg) >

Figure 4.6: More complex composition.

Notice that the bottom port of machine A goes both to the output of the composite machine and to
the top port of machine B. Sending a value to multiple destinations like thisis called forking. In
exercise 1 at the end of this chapter you are asked to define the composite machine for this example.

Example 4.3:

We compose the answering machine of figure 4.5 with a playback system, shown in
figure 4.7, which plays messages that have been recorded by the answering machine.
The playback system receives the recorded message input from the answering machine
whenever the answering machine is done recording a message. Its task isto light an
indicator that a message is pending, and to wait for a user to push a button on the
answering machine to request that pending messages be played back. When that button
is pressed, all pending messages are played back. When they are done being played
back, then the indicator light isturned off.

The composition is shown in figure 4.8. The figure shows a number of other com-
ponents, not modeled as state machines, to help understand how everything works in
practice. These other components are shown as three-dimensional objects, to empha-
size their physicality. We have simplified the figure by omitting the absent elements of
al the sets. They are implicit.

A telephone line interface provides ring and offhook when these are detected. De-
tection of one of these can trigger a reaction of the composite machine. In fact, any
output from any of the physical components can trigger a reaction of the composite
machine. When AnsweringMachine generates the answer output, then the “greeting
playback device’ plays back the greeting. From the perspective of the state machine
model, al that happens is that time passes (during which some reactions may occur),

108 CHAPTER 4. COMPOSING STATE MACHINES

I
{ recorded message, absent} else

—»

{light on, light off, absent}
{(*.play,*)}/ >

{ (recorded message,* ,*)}/ (absent, play messages)

(light on, absent)

{ play, absent}
—_—

else

{ done playing, absent} {(*,*, done playing)}/ e b
T Ty tin

(light off, absent) { play messages, absent}

Figure 4.7: Playback system for composing with the answering machine.

and then an end greeting input isreceived. The recording device works similarly. When
AnsweringMachine generates a recorded message output, then the Playback machine
will respond by lighting the indicator light. When a user presses the “play button” the
input play is generated, the composite machine reacts, and the Playback machine issues
aplay messages output to the “message playback device.” Thisdevice aso allowstime
to pass, then generates a done playing input to the composite state machine.

If we wish to model the playback or recording subsystem in more detail using finite
state machines, then we need to be able to handle feedback compositions. These are
considered below.

4.6 Hierarchical composition

By using the compositions discussed above, we can now handle any composition of state machines
that does not have feedback. Consider for example the cascade of three state machines shown in
figure 4.9. So far, al the composition techniques we have talked about involved only two state
machines. It is easy to generalize the composition in figure4.2 to handle three state machines
(see exercise 2), but a more systematic method might be to apply the composition of figure4.2 to
compose two of the state machines, and then apply it again to compose the third state machine with
the result of the first composition. Thisis called hierarchical composition.

In general, given a collection of interconnected state machines, there are several ways to hierarchi-
cally compose them. For example, in figure4.9, we could first compose machines A and B to get,
say, machine D, and then compose D with C. Or we could aternatively first compose B and C'
to get, say, machine E, and then compose E and A. These two techniques result in different but

4.6. HIERARCHICAL COMPOSITION 109

greeting playback
device

{answer}
{end greeting}

{recorded message}

— | AnsweringMachine >
{ring, offhook}

Rt — —» Playback
{record} >
{ end message}
{play}
{done playing} {play messages}
recording device 4—

message playback
telephone play & device I

line interface) button

Figure 4.8: Composition of an answering machine with a message playback
machine. The three-dimensional boxes are physical components that are
not modeled as state machines. They are the sources of some inputs and
the destinations of some outputs.

110 CHAPTER 4. COMPOSING STATE MACHINES

(States, Inputs, Outputs, update, initial Sate)

— > (Statesp, Inputsa, Outputsa, updatey, initial Sates)

L (Statesg, Inputsg, Outputsg, updateg, initial Yateg)

L (Statesc, Inputsc, Outputsc, updateg, initial Satec) >

Figure 4.9: Cascade composition of three state machines. They can be
composed in different ways into different, but bisimilar, state machines.

bisimilar state machine models (each simulates the other).

4.7 Feedback

In simple feedback systems, an output from a state machine is fed back to an input of the same state
machine. In more complicated feedback systems, several state machines might be connected in a
directed loop, where eventually the output of one affects its own input through some intervening
state machines.

Feedback is a subtle form of composition under the synchronous model. In a synchronous compo-
sition, the output of a state machine is simultaneous with the input. Thus, the output of a machine
in feedback composition depends on an input that depends on the output. Feedback, thus, involves
self-referential logic.

Such self-referentia logic isnot all that unfamiliar. We seeit al the time in systems of equations in
mathematics. A simple and familiar problem isto find = such that

x = f(z) (4.6)

for some function f. A solution to this equation, if it exists, is called afixed point in mathematics.
It is analogous to feedback because the “output” of f depends on its“input” and vice versa.

A more complicated fixed point problem in mathematicsisto find = and y such that

z=f(y) (4.7)

4.7. FEEDBACK 111

(States, Inputs, Outputs, update, initial Sate)

(Statesa, Inputsa, Outputsa, updates, initial Yates) >

Outputsa [Inputsa

(States, Inputs, Outputs, update, initial tate)

{react, stutter}

(Statesp, Inputsa, Outputsa, updates, initial Sates) >

Outputsa [Inputsa

Figure 4.10: Feedback composition with no inputs.

and
y=g(z). (4.8)
The analogous state machine problem will have two state machines with feedback.

Fixed-point equations like (4.6) may have no solution, asingle solution, or multiple solutions. That
is, they may have no fixed points, a unique fixed point, or multiple fixed points. When the fixed
point is not unique, in the context of state machines, we will deem the feedback composition to
be ill-formed. That is, we will refuse to evaluate it, and consider it defective. Fortunately, it is
easy to construct well-formed feedback compositions, those with a unique fixed point, which prove
surprisingly useful.

Some fixed-point problems are easy to solve. Consider for example the function f: Nats — Nats
where Vo € Nats, f(z) = z%. In this case, (4.6) becomes » = 22, which has two fixed points,
namely x = 0 and x = 1. Unfortunately, state machines are rarely so accommodating. It will take
somewhat more elaborate techniques.

4.7.1 Feedback composition with noinputs

Consider the upper state machine in figure4.10, which has an output port that feeds back to an input
port. We wish to construct a state machine model that hides the feedback, as suggested by the figure.
The result would be a state machine with no input or ports, which does not fit our model well. We
therefore artificially provide an input alphabet

Inputs = {react, stutter },

as suggested in the lower machine. We will interpret the input react as a command for the internal
machine to react, and the input stutter as a command for the internal machine to stutter. The output

112 CHAPTER 4. COMPOSING STATE MACHINES

(States, Inputs, Outputs, update, initial Sate)

(Statesp, Inputsa, Outputsa, updatey, initial Sates) >

Outputsa [Inputsa

(Statesg, Inputsg, Outputsg, updateg, initial Yateg) >

Ve

Figure 4.11: Feedback composition composed with another state machine.

alphabet is
Outputs = Outputs,.

This example is a bit odd for a synchronous/reactive system because of the need for this artificial
input al phabet. Recall that the reactions of areactive system are driven by external inputs. Typically,
such a system will be composed with others, as suggested in figure4.11. Since that composition
does have inputs, the subsystem with no inputs will react whenever the overall composition reacts.
The interpretation there is clearer. When a stuttering element is provided to the composite, all
components stutter. Otherwise, they react.

We consider the example in figure4.10 first because, athough it seems odd, the formulation of the
composition is simplest. We will augment the model to allow inputs and outputs after this.

In figure 4.10, for the feedback connection to be possible, of course, we have to assume
Outputs, C Inputs,.

To determine the output, we need to solve the following equation. Given that the current state is
s € Satesy, find s’ € Satesy and b € Outputs, such that

(s',b) = update, (s, b).
One solution that is aways available is to stutter,
s’ = s and b = absent,
assuming that absent is the stuttering input for machine A. To find a non-stuttering reaction, it is

sufficient, of course, to find b, and then compute s by applying the update function. Define the
function

output ,: Statesy x Inputs, — Outputs,

4.7. FEEDBACK 113

This function gives the output as a function of the current state and the current input. Then we
simply need to find a non-stuttering b that satisfies

b = output 4 (s, b). (4.9

Thisis non-trivial because b appears on both sides. Except for the addition of s, which is a known
constant when we go to solve this equations, this has exactly the form of @.6). A solution, if it
exigts, is called afixed point.

Finding this fixed point requires using the detailed definition of the state machine. We will do this
first mathematically, and then show by example how the solution procedure can be surprisingly
easily applied using a state transition diagram. The procedure will consist of first assuming that the
value fed back (that is, b) is unknown, and then seeing whether the output can be determined even
though the input is unknown. Often it can be. When it can be, then the output becomes determined,
which then determines the input. When it cannot be, then we declare the feedback composition to
be ill-formed.

Mathematically, this procedure involves augmenting the domain and range of the function output,
to include an element that we will call unknown? For the example in figure 4.10, we define the
augmented sets

Inputs, = Inputs, U {unknown}
Outputs, = Outputs, U {unknown}.
We then define a new function
output’y: Satess x Inputs, — Outputs,. (4.10)

This is just like the original function except that it can accept the value unknown in its second
argument and may generate the value unknown.

We define the function output, asfollows. Given
s € Yatesy and a € Inputs),,
there are two possible conditions:
1. a # unknown. In this case we define output/, (s, a) = output 4 (s, a). Thisis possible because
since a is not unknown, (s, a) isin the domain of output,.
2. a = unknown. In this case, there are two possible outcomes.
(8 Thereisaunique value b € Outputs, such that
V ¢ € Inputs, where ¢ # stuttering element, output, (s, c) = b. (4.12)
That is, for all possible inputs, the output is always the same. Then we define
output’, (s, a) = output 4 (s, b).

In other words, the output depends only on the state, so we can determine the output
even though the input is unknown.

2This element is often called bottom in the literature, for mathematical reasons that are beyond the scope of this text.
In brief, bottom isthe least element of a partial order. Note that unknown is different from absent.

114 CHAPTER 4. COMPOSING STATE MACHINES

(b) Thereisno such b, in which case we define

output’y (s, a) = unknown.

Inthelast of these cases, we have found afixed point of the function output,, namely unknown. This
is not an acceptable answer for the function output, (it isnot in its domain), so we declare the state
machine to be ill-formed. More specifically, we say that it has a causality loop, a self-referentia
logic that cannot be resolved.

A summary of the composite machine definition is:

Sates = Satesy
Inputs = {absent }
Outputs = Outputs,
initial State = initial Statey
) update,(s,b), where b satisfies (4.11) if z = react
update(s,) = { (s,2) if z = stutter

Notice that thisisonly valid if the state machine iswell formed, i.e., thereisab that satisfies @.11).
If there is no such b, then the machine is not well formed.

Example 4.4: Consider the examples shown in figure4.12. In al three cases, assume
that the input and output al phabets of the component machines are

Inputs, = Outputs, = {true, false, absent}.

Let us apply the procedure to find b in (4.11) for each case, assuming the input =
unknown.

Consider the top machine first, and assume the current state is the initial state, s = 1.
Notice that there are two outgoing arcs, and that for anon-stuttering input, both produce
b = false, so we can conclude that the output of the machine is false. Since the output
is false, then the input is also false, so the state transition taken by the reaction goes
from state 1 to state 2.

Suppose next that the current state is s = 2. Again, there are two outgoing arcs. Both
outgoing arcs produce the output true for anon-stuttering input, so we can conclude that
the output is true. Since the output istrue, then so isthe input, and the state transition
taken goes from 2 to 1.

This machine, therefore, aternates states on each reaction, and produces the output
sequence
(false, true, false, true, false, true, - - -)

given the input sequence
(react, react, react, - - -).

The feedback composition is well-formed.

4.7. FEEDBACK 115

{true}/false {false}/false {false}/true

{true}/true

@

{true}/false {false}/true {false}/true

{true} /[false

(b)

{true}/true {false}/false {false}/false

{true} /true

(©

Figure 4.12: Three examples of feedback composition.

116 CHAPTER 4. COMPOSING STATE MACHINES

(States, Inputs, Outputs, update, initial State)
Inputsag Outputsay

(Statesa, Inputsa, Outputsa, updatey, initial Staten) >

Outputsao U Inputsan

Figure 4.13: Feedback composition of a state machine.

Consider by contrast the second machine in figure4.12. If theinitial stateis 1 and the
input is unknown, then there are two possible outgoing transitions, but they produce
different output values. Thus, we cannot determine the output. The same is true of
state 2. The feedback composition is not well-formed. In fact, by inspection, you can
see that no output works. If the output is true, then a transition must be taken that
produces the output false, so the output must be false. But if the output is false, then a
transition is taken that produces the output true, so the output must be true. Thisisa
contradiction.

Consider the third machine in figure4.12. The same procedure failsto progress beyond
unknown for this example, so this feedback composition is also ill-formed. However,
the situation is not quite the same as in the middle example. By inspection, we can
determine that if the output is true, then a transition will be taken that will produce
true for anon-stuttering input. Thus, in this case, the output can betrue! However, the
output can also be false, since if it is, then atransition will be taken that produces the
output false. Thus, the problem here is that there is more than one solution, not that
there are none!

Our conclusion is that with machines like the second and third, you cannot connect
them in a feedback composition as shown. The second and third machines are rejected
equally vigorously by our procedure, even though the second has no solution and the
third has more than one. We accept only solutions that where there is exactly one
solution (below we will generalize this to nondeterministic machines, but we will still
reject compositions as in the third example).

4.7.2 Feedback composition with inputs

Consider the state machine in figure4.13, which has an output port that feeds back to an input port.

We wish to construct a state machine model that hides the feedback, as suggested by the figure, and
becomes a simple input/output state machine. Thisis similar to the example in figure4.10, but now

there is an additional input and an additional output. The approach is very similar, although the
notation is more cumbersome, so we spare the reader the details.

4.7. FEEDBACK 117

Probing further: Least fixed point

The fact that we reject the second and third examples in figure4.12 as being ill-
formed may be objectionable to some readers. The third example, in particular,
has more than one behavior. Why not model the composition as a nondeterministic
state machine? There are very good mathematical reasons for rejecting it. Our
basis for rejecting it is that we define the behavior of a composition to be the least
fixed point (excluding the stuttering fixed point) of the augmented model (the one
including unknown) when there is more than one fixed point. Our procedure, in
fact, is guaranteed to find this least fixed point, even when large, multi-machine
compositions are considered. Moreover, this least fixed point is guaranteed to be
unique. The mathematical basis for these observations, which were first devel oped
by Dana Scott around 1970, are deep and very robust.

The mathematical formulation constructs what isknown as a Scott topology, which
is an ordering of values where unknown is considered to be “less than” al other
values, and all other values (including absent) are considered to be incomparable
(neither less than nor greater than one another). This structure turns out to be a
topological space with some very powerful properties. It is a special case of a
class of mathematical structures known as partial orders. The output, function of

(4.10) is monotonic nondecreasing in this ordering, meaning in this simple case
that it never yields unknown when the input is known. Monotonic functions in this
topological space can be proven to have exactly oneleast fixed point, and moreover,
that fixed point can always be found in finite time.

The robustness of this mathematical formulation means that it extends comfortably
to much more complicated compositions, where there are multiple machines and
multiple feedback paths. Any solution that embraces the third example in figure
4.12 is unlikely to be so robust. In that example, output, has three fixed points,
unknown, true, and false. Without the least fixed point principle, we have no basis
for choosing among these. The reason for the three behaviors is a causality loop,
where the causal relationships among values are circular.

In figure 4.12(b), the fixed point is unique, unknown. We reject this because it is
not avery satisfying answer. It also indicates a causality loop.

A dense but complete and readable introduction to the mathematics of partial orders
canbefoundin B. A. Davey and H. A. Priestly, Introduction to Lattices and Order,
Cambridge University Press, 1990.

118 CHAPTER 4. COMPOSING STATE MACHINES

Applying the procedure is much easier than defining it precisely in mathematical terms. The pro-
cedure is to assign the value unknown to the second (bottom) input of the A machine. If without
knowing the value of that input we can determine the value of the second output of machine A, then
the feedback composition iswell-formed. We use that value of the second output as the value of the
second input. We can now evaluate the output, function to determine the output, and then evaluate
update using that output as an input.

4.7.3 Feedback composition of multiple machines

Our examples so far involved only a single state machine and a feedback loop. Most interesting
scenarios are more complicated, involving severa state machines and severa feedback loops. Our
procedure for evaluating the state machines can be extended to such scenarios easily. The approach
issimple. At each reaction, begin with all unspecified signals having value unknown. Then with
what is known about the inputs, try each state machine to determine as much as possible about
the outputs. You can try the state machines in any order. Given what you have learned about the
outputs, then update what you know about the feedback inputs, and repest the process, trying each
state machine again. Repeat this process until all signal values are specified, or until you learn
nothing more about the outputs. If any signals remain unknown, then you have a causality loop.

Example 4.5: Consider the example in figure4.14. Here, two of the state machines
from figure 4.12 have been connected in afeedback loop. One approach to getting the
behavior of the composite would be to define a state machine for the serial connection
of these two (in either order), and then use that state machine in the structure of figure
4.10. However, we can directly evaluate the behavior of the composite machine using
ageneralization of our procedure.

Assume all inputs to the composite are react, not stutter. We are interested in the state
trgjectory and output sequence of the composite machine. The state spaceis

States = {1,2} x {1,2}
and the output space is

Outputs = {true, false, absent}, {true, false, absent }.

The input aphabet is

Inputs = {react, absent },
and the initia stateis

initial State = (1, 1).

To apply our procedure, we first assume both outputs (and the inputs to the component
state machines) are unknown. We then attempt to determine the outputs of the compo-
nent state machines (in any order). Let us begin with the lower one. Itisin state 1, and
the input is unknown, so the output remains unknown, and we make no progress. Turn-
ing our attention to the upper one, itsinput is unknown and state is 1, but we can infer

4.7. FEEDBACK 119

{true}/false {false}/false {false}/true

{true}/true

{true}/false {false}/true {false}/true

{true} /false

Figure 4.14: Feedback composition with two state machines.

120

This procedure can be applied in general to any composition of state machines. In summary, the
procedure is to assign the value unknown to any unknown signals, and then to proceed through a
series of rounds until around yields no further information. Each round consists of examining each
state machine (in any order) and, given what you know about itsinputs, asserting what you can infer

CHAPTER 4. COMPOSING STATE MACHINES

that the output must be false because both outgoing transitions from state 1 produce
false. Thus, we have made some progress on this round.

In the second round, we again turn attention to the lower machine. Its input is now
false, from which we can infer that it will transition to state 2 and output atrue. Turn-
ing attention to the upper machine, the input is now true, from which we infer that it
will transition back to state 1 along the self loop (and we aready know that it would
output false). Now the state transition and output of the composite machine for the first
reaction is known.

Continuing in this fashion, we can determine that the state trgjectory will be
((17 1)7 (17 2)7 (17 2)7 (17 2)7 o)

and the output sequence will be
((false, true), (false, true), - - -).

The state machine gets stuck in state (1, 2).

about its outputs.

The sort of reasoning in this more complicated exampleisdifficult and error prone for even moderate
compositions of state machines. It is best automated. Compilers for synchronous languages do
exactly this. Successfully compiling a program involves proving that causality loops cannot occur.

Example 4.6. We wish to add more detail to the message recorder in figure4.8. In
particular, as shown in figure4.15, we wish to model the fact that the message recorder
stops recording when either it detects a dialtone or when atimeout period is reached.
Thisis modeled by a two-state finite state machine, shown in figure4.16.

The MessageRecorder and AnsweringMachine state machines form a feedback |oop.
Let us verify that there is no causality loop. First, note that in the idle state of the
MessageRecorder , the upper output is known to be absent (see figure4.16). Thus, only
in the recording state is there any possibility of a causality loop. Inthat state, the output
is not known unless the inputs are known. However, notice that the recording state is
entered only when arecord input is received. In figure4.5, you can see that the record
value is generated only when entering state record message. But in all arcs emerging
from that state, the lower output of AnsweringMachine will always be absent; the input
does not need to be known to know that. Continuing this reasoning by considering all
possible state transitions from this point, we can convince ourselves that no causality
loop emerges.

4.7. FEEDBACK 121

greeting playback
device
. {answer}
{end greeting} {light on, light off
{recorded message} N
» AnsweringMachine >
{ring, offhook}
— — Playback
d
end message} {record} >
{play}
{done playing} {play messages}
{dialtone}
MessageRecorder - |
/ message playback |
telephone | | play | device n
line interface [—— g button \

i {timeout}
{startrecordingy ~

—» recording device

Figure 4.15: Answering machine composition with feedback. The absent
elements are not shown (to reduce clutter)

{record, absent}

> {(record, absent, absent)}/ {'end message,
(absent, start recording) absent}
else
{dialtone, absent}
— ™ recording
else

{timeout, absent} { (absent, dialtone, absent), (absent, absent, timeout), {start recording,
—— (absent, dialtone, timeout)}/ absent}

(end message, absent)

Figure 4.16: Message recorder subsystem of the answering system.

122 CHAPTER 4. COMPOSING STATE MACHINES

4.8 Nondeter ministic machines

Nondeterministic state machines can be composed just as deterministic state machines are com-
posed. In fact, since deterministic state machines are a special case, the two types of state machines
can be mixed in a composition. Compoasitions without feedback are straightforward, and operate
almost exactly as described above (see exercises11 and 10). Compositions with feedback require a
small modification to our evaluation process.

Recall that to evaluate the reaction of a feedback composition, we begin by setting to unknown any
inputs that are not initially known. We then proceed through a series of rounds where in each round,
we attempt to determine the outputs of the state machines in the composition given what we know
about the inputs. After some number of rounds, no more information is gained. At this point, if the
composition is well-formed, then al the inputs and outputs are known.

This process needs to be modified slightly for nondeterministic machines because in each reaction,
amachine may have several possible outputs and several possible next states. For each machine, we
define the sets Possiblelnputs C Inputs, PossibleNextStates € Sates and PossibleNextOutputs C
Outputs. If the inputs to a particular machine in the composition are known completely, then
Possiblelnputs has exactly one element. If they are completely unknown, then Possiblelnputs is
empty.

The rounds proceed in a similar fashion to before. For each state machine in the composition,
given what is known about the inputs, i.e. given Possiblelnputs, determine what you can about
the next state and outputs. This may result in elements being added to PossibleNextStates and
PossibleNextOutputs. When around results in no such added elements, the process has converged.

Exercises

In some of the following exercises you are asked to design state machines that carry out a given
task. The design is simplified and elegant if the state space is properly chosen. Although the state
space is not unique, there often is a natural choice. Each problem is annotated with the letter E,
T, C which stands for exercise, requires some thought, requires some conceptualization. Problems
labeled E are usually mechanical, those labeled T require a plan of attack, those labeled C usually
have more than one defensible answer.

1. E Define the composite state machine in figure 4.6 in terms of the component machines,
as done for the simpler compositions in figures4.2 and 4.1. Be sure to state any required
assumptions.

2. E Define the composite state machine in figure 4.9 in terms of the component machines,
as done for the simpler compositions in figures4.2 and 4.1. Be sure to state any required
assumptions. Give the definition in two different ways:

(a) Directly form aproduct of the three state spaces.

4.8. NONDETERMINISTIC MACHINES 123

(b) First compose the A and B state machines to get a new D state machine, and then
compose D with C.

(c) Comment on the relationship between the modelsin part (a) and (b).

3. T Consider the state machine UnitDelay studied in part (a) of exercise5 at the end of the
previous chapter.

(a) Construct a state machine model for a cascade composition of two such machines. Give
the sets and functions model (it is easier than the state transition diagram or table).

(b) Areall of the states in the state space of your model in part (@) reachable? If not, give
an example of an unreachable state.

(c) Givethe state space (only) for cascade compositions of three and four unit delays. How
many elements are there in each of these state spaces?

(d) Give an expression for the size of the state space as function of the number N of cas-
caded delays in the cascade composition.

4. C Consider the parking meter example of the previous chapter, example3.1, and the modulo
N counter of exercise4 at the end of the previous chapter. Use these two machinesto model a
citizen that parks at the meter when the machines start, and inserts 25 cents every 30 minutes,
and a police officer who checks the meter every 45 minutes, and issues a ticket if the meter
isexpired. For simplicity, assume that the police office issues a new ticket each time he finds
the meter expired, and that the citizen remains parked forever.

You may construct the model at the block diagram level, asinfigure4.8, but describe in words
any changes you need to make to the designs of the previous chapter. Give state transition
diagrams for any additional state machines you need. How long does it take for the citizen to
get the first parking ticket?

Assume you have an eternal clock that emits an event tick every minute.

Note that the output aphabet of the modulo N counter does not match the input alphabet of
the parking meter. Neither does its input alphabet match the output alphabet of the parking
meter. Thus, one or more intermediate state machines will be needed to trandate these al-
phabets. You should fully specify these state machines (i.e., don't just give them at the block
diagram level). Hint: These state machines, which perform an operation called renaming,
only need one state.

5. C A road has a pedestrian crossing with a traffic light. The light is normally green for
vehicles, and the pedestrian istold to wait. However, if apedestrian presses a button, the light
turns yellow for 30 seconds and then red for 30 seconds. When it isred, the pedestrian is told
“cross now.” After the 30 seconds of red, the light turns back to green. If apedestrian presses
the button again while the light is red, then the red is extended to a full minute.

Construct acomposite model for this system that has at least two state machines, TrafficLight
for the traffic light seen by the cars, and WalkLight for the walk light seen by the pedestrians.
The state of machine should represent the state of the lights. For example, TrafficLight should
have at least three states, one for green, one for yellow, and one for red. Each color may,
however, have more than one state associated with it. For example, there may be more than

124 CHAPTER 4. COMPOSING STATE MACHINES

one state in which thelight isred. Itistypical in modeling systems for the states of the model
to represent states of the physical system.

Assume you have atimer available such that if you emit an output start timer, then 30 seconds
later an input timeout will appear. It is sufficient to give the state transition graphs for the
machines. State any assumptions you need to make.

6. C Recall the playback machine of figure 4.7 and the CodeRecognizer machine of Figure
3.4. Enclose CodeRecognizer in a block and compose it with the playback machine so that
someone can play back the recorded messages only if she correctly enters the code 1100.

7. E Consider the following state machine in a feedback composition, where the input al phabet
for the state machineis {1, 2, 3, absent }:

else/2 {2}/2 else/3

(11 {(3}/3

else/l

Isit well-formed? If so, then find the outputs for the first 10 reactions.

8. E Inthis problem, we will explore the fact that a carefully defined delay in a feedback com-
position always makes the composition well-formed.

(@) For aninput and output alphabet
Inputs = Outputs = {true, false, absent }

design a state machine that outputs false on the first reaction, and then in subsequent
reactions, outputs the value observed at the input in the previous reaction. Thisissimilar
to UnitDelay of problem 5 at the end of chapter 3, with the only difference being that it
outputs an initial false instead of absent.

(b) Compose the machine in figure4.12 (b) with the delay from part (a) of this problemina
feedback loop (asin figure4.14). Give an argument that the composition iswell-formed.
Then do the same for figure 4.12 (c) instead of (b).

4.8. NONDETERMINISTIC MACHINES 125

0.

10.

11.

12.

C Construct afeedback state machine with the structure of figure4.10 that outputs the periodic
sequence a, b, c,a,b,c---.

E Modify figure 4.1 as necessary so that the machines in the side-by-side composition are
both nondeterministic.

E Modify figure 4.2 as necessary so that the machines in the cascade composition are both
nondeterministic.

C,T Data packets are to be reliably exchanged between two computers over communication
links that may lose packets. The following protocol has been suggested. Suppose computer
Aissending and B isreceiving. Then A sends a packet and starts atimer. If B receives the
packet it sends back an acknowledgment. (The packet or the acknowledgment or both may
belost.) If A does not receive the acknowledgment before the timer expires, it retransmits the
packet. If the acknowledgment arrives before the timer expires, A sends the next packet.

(@) Construct two state machines, one for A and one for B, that implement the protocol.

(b) Construct a two-state nondeterministic machine to model the link from A to B, and
another copy to model the link from B to A. Remember that the link may correctly
deliver apacket or it may loseiit.

(c) Compose the four machines to model the entire system.

(d) Suppose the link correctly delivers a packet, but after a delay that exceeds the timer
setting. What will happen?

126 CHAPTER 4. COMPOSING STATE MACHINES

Chapter 5

Linear Systems

Recall that the state of a system is a summary of its past. It iswhat it is needs to remember about
the past in order to react at the present and move into the future. In previous chapters, systems
typicaly had afinite number of possible states. Many useful and interesting systems are not like
that, however. They have an infinite number of states. The analytical approaches used to analyze
finite-state systems, such as simulation and bisimulation, get much more difficult when the number
of statesis not finite.

In this chapter, we begin considering infinite-state systems. There are two key constraints that we
impose. First, we require that the state space and input and output alphabets be numeric sets. That
is, we must be able to do arithmetic on members of these sets. (Contrast this with the answering
machine example, where the states are symbolic names, and no arithmetic makes sense.) Second, we
require that the update function be linear. We will define what this means precisely. In exchange for
these two constraints, we gain avery rich set of analytical methods for designing and understanding
systems. In fact, the next five chapters are devoted to devel oping these methods.

In particular, we study state machines with

Sates = Reals"
Inputs = Reals™ (5.1)
Outputs = Reals”.

Such state machines are shown schematically in figure5.1. The inputs and outputs are in product
form, as discussed for general state machines in section4.4. The system, therefore, can be viewed
as having M distinct inputs and K distinct outputs. Such a system is called a multiple-input,
multiple-output system, or MIMO system. When M = K = 1, itiscalled asingle-input, single-
output system, or SI SO system. The state isatuple with IV real numbers. Thevalue of IV iscalled
the dimension of the system.

127

128 CHAPTERS. LINEAR SYSTEMS

s Reals Reals X
% — Redls o MmiMOdifference ——ReAlS 5 §
Ellli equation system 0
2 g
3 Sates = RealsN g
= — Redls ___Reals !

Figure 5.1: Block representing a multiple-input, multiple output difference
equation system.

5.1 Operation of an infinite state machine

Recall that a deterministic state machine is a 5-tuple

M = (States, Inputs, Outputs, update, initial Sate) (5.2
where States isthe state space, Inputsisthe input space, Outputsisthe output space, update: Satesx
Inputs — Sates x Outputs is the update function, and initialSate istheinitia state.

In this chapter, the update function has the form
update: Reals" x Reals — Reals" x Reals”.

The result of evaluating this function is an N-tuple (the new state) and a K -tuple (the output). It
will be useful in this chapter to break this function into two parts, one giving the new state and one
giving the output,
update = (nextState, output)
where
nextSate: Reals" x Reals’ — Reals"

output: Reals" x Reals” — Reals®
such that

Vs € Reals",z € Reals, update(s,z) = (nextYate(s, x), output (s, z)).

These two functions separately give the state update and the output as a function of the current state
and the input. Given an input sequence (0), (1), - - - of M-tuplesin Reals”, the system generates

a state response s(0), s(1),--- of N-tuples in Reals¥ and an output sequence y(0),y(1),--- of

K-tuplesin Reals” asfollows:

s(0) = initialState,
(s(n+1),y(n)) update(s(n),z(n)), n>0 (5.3)

5.1. OPERATION OF AN INFINITE STATE MACHINE 129

Basics: Arithmetic on tuples of real numbers

Anelement s € Reals" isan N-tuple. The components of s € Reals" are denoted
s=(s1, -,sn); smilarly z = (zy,---,z) € Reals™,andy = (y1,---,yx) €
Reals. These components, s;, x;, y;, are al real numbers, i.e. elements of Reals.
A tupleissimilar to an array in programming languages.

In general, atuple can contain as elements members of any set. In this chapter,
however, we are using a very specia set, Reals. This set is humeric, and we can
perform arithmetic on members of the set (addition, subtraction, multiplication,
division). We wish to also be able to perform arithmetic on tuples composed of
members of the set.

The sum of two tuples of the same dimension is defined to be the tuple of the
element-wise sum. |.e. if z € Reals" and w € Reals, then

r+w=(x;+wi, -, TN+ wN).

Subtraction is similarly defined. To perform more elaborate arithmetic operations,
such as multiplication, we will need matrices and vectors. Tuples will not be suffi-
cient.

The second equation can be rewritten as a separate state update equation,

‘V nelnts, n >0, s(n+1)= n@dSate(s(n),:r(n))‘ (5.9)

and an output equation,

‘V nelnts, n>0, y(n)= Output(s(n),:r(n)).‘ (5.5

These equations are collectively called a state-space model of the system, because instead of giving
the output directly as afunction of the input, the state is explicitly described. The equations suggest
a detailed procedure for calculating the response of a system. We start with a given initia state
s(0) = initialState, and an input sequence z(0), z(1),---. At step n = 0, we evaluate the right-
hand side of (5.4) at the known values of s(0), z(0) and we assign theresult to s(1). Atstepn = 1,
we evaluate the right-hand side at the known values of s(1), z(1) and we assign the result to s(2).
To proceed from step n to step n + 1, we only need to remember s(n) and know the new input z(n).
At each step n, we evaluate the output y(n) using (5.5). This procedure is no different from that
used for state machines in previous chapters. However, we will specialize the nextState and output
functions so that they are linear, which will then lead to a powerful set of analytical tools.

511 Time

The index n in the equations above denotes the step number, the count of reactions, as with any
state machine. For general state machines, it is rare to associate a fixed time interval with a step.

130 CHAPTERS. LINEAR SYSTEMS

Basics: Functionsyielding tuples

The ranges of the nextState and output functions are tuples. It will help to un-
derstand their role if we break them down further into an N-tuple and K -tuple of
functions, one for each element of the result tuple. That is, we define the functions

nextSate;: Reals” x Reals” — Reals, i =1,---, N,
suchthat vV s € Reals", z € Reals,
nextate(s, z) = (nextXate; (s, z), - - - , nextatey (s, z)).
We write simply

nextSate = (nextSate, - - - , nextSatey).

The output function can be given similarly as
output = (outputy, - - -, output 5),

where
output;: Reals" x Reals — Reals, i =1,---, K.

Using these, the state update equation and output equation can be written as
follows. For adl n € Ints, n > 0,

si(n+1) = nextSate;((s1(n),---,sn(n)), (x1(n), -, zm(n))),
sa(n+1) = nextSatey((s1(n),---,sn(n)), (x1(n), -, zm(n))),
(5.6)
sn(n+1) = nextSatey((si(n),---,sn(n)), (z1(n), -, zm(n))),
and
yi(n) = outputy((si(n),---,sn(n)), (x1(n),---,xm(n))),
ya(n) = outputy((si(n),---,sn(n)), (x1(n),---,xm(n))),
(5.7)
yr(n) = outputy((si(n),---,sn(n)), (z1(n), -, zm(n))),

This system of equations shows the detailed structure of the operation of such a
state machine.

5.1. OPERATION OF AN INFINITE STATE MACHINE 131

So there is normally no simple relation between the step number and the real time at which the
corresponding reaction occurs. For example, in the answering machine, if the initial state isidle,
there may be an arbitrary amount of time before ring occurs and the state moves to count1l.

Linear systems, however, usually evolve more smoothly in time, with afixed time interval between
updates. Suppose thisinterval is § seconds. Then step n occurs at time né seconds, relative to time
0. Such systems are discrete-time systems, and the index n is called the time index.

The systems we consider in this chapter will be time-invariant systems, meaning that the nextSate
and output functions do not change with the time index n. For such systems, it is slightly peculiar
to have time start at 0 and go to infinity. Why wouldn’t time also go to minus infinity? We can
easily augment the state machine model to dispense with the artifice of time starting at 0. All we do
is assume that

Vnelnts n<0, s(n)=s(0).

That is, prior to time index O, the system stutters. At time index O, the system has already been
stuttering forever. Thus, the time index n = 0 has the interpretation of being the time at which
non-stuttering inputs begin arriving.

For linear systems, we will see that the stuttering input is atuple of zeros, so
Vnelnts, n<0, z(n)=0.

For linear systems, we will see that s(0) = 0 and
Vnelnts n<0, y(n) =0.

Thus, for linear time-invariant (LTI) systems given in this model, everything is zero prior to time
index 0. The system issaid to be at rest.

In previous chapters, the set of input signals to a state machine was
InputSignals = [Natsy — Inputs|.
In this chapter, it will be

‘ InputSignals = [Ints — Inputs}.‘

We will simply assume that the inputs prior to time index O are al stuttering inputs. Correspond-
ingly,

‘ OutputSgnals = [Ints — Outputs]. ‘

The state response, then, isafunction

| 5: Ints — States|

where s(n) = s(0) for al n < 0. With this device, the state update equation becomes

[¥Vnelns s(n+1) =netSate(s(n), z(n))| (5.8)

and the output equation becomes,

[¥nelnts, y(n) = output(s(n), z(n)).| (5.9)

That is, we dispense with the qualifier n > 0.

132 CHAPTERS. LINEAR SYSTEMS

Basics: Linear functions

A function f: Reals — Realsisalinear function if V x € Realsand w € Reals,
flwz) = wf(x)
andV x;, € Realsand 2, € Reals,
flzr+a2) = f(z1) + f(z2).

More compactly, f islinear if V 1, x5 € Realsand w, u € Reals,

flwzy +uxs) = wf(zr) + uf(za).

More generaly, consider a function f: X — Y, where X and Y are sets that
support addition and multiplication by areal number. For example, X and Y could
be tuples of redsinstead of just reals. In fact, they could even be signal spaces, in
which case f isthe input/output function of a system. Thisfunction islinear if for
al x1,29 € X,and w, u € Reals,

‘f(wxl + uxe) = wf(xy) —|—uf(x2).‘ (5.10)

The property (5.10) is called superposition. A function is linear if it satisfies the
superposition property.

When the domain and range are both the set Reals, then a linear function has the
form,
Vo eReas f(z)=ax

for some constant a The term “linear” comes from the fact that a plot of f(z)
vs. x isastraight line that passes through zero. If the line did not pass through
zero, mathematicians would call this affine rather than linear. Note than an affine
function would not satisfy the superposition property (we leave it as an exercise to
show this).

Suppose f: Reals x Reals — Realsislinear. Then it has the form
Vs,x € Reals, f(s,x)=as+ bx.

Itissaid to form alinear combination of its arguments. Similarly, alinear function
of atuple forms a linear combination of the elements of the tuple. And a linear
function of apair of tuplesformsalinear combination of the elements of the tuples.

52. ONE-DIMENSIONAL SISO SYSTEMS 133

5.2 One-dimensional SISO systems

Consider aone-dimensional, single-input, single-output (SISO) system given by the following state-
space model, Vn € Ints,

‘ s(n+1) = as(n) + bx(n), (5.11)

‘y(n) = cs(n) + dz(n), (5.12)

where a, b, ¢ and d are fixed constants with values in the set Reals. The initial state is s(0) =
initial Sate. For this system, the state at agiven time index isareal number, as are the input and the
output. The nextState and update functions are

nextate(s(n),x(n)) = as
output(s(n),z(n)) = cs(n)+ dx(

—

n) + bx(n)

).

3

Both of these are linear functions (see box on page132.

Let us consider an example where we construct a state-space model from another description of a
system.

Example 5.1 In section 2.3.3 we considered a simple moving average example,
where the output y is given in terms of the input x by

Vnelnts, y(n)=(xn)+zn-1))/2. (5.13)

This is not a state-space model. It gives the output directly in terms of the input. To
construct a state-space model for it, we first need to decide what the state is. Usualy,
there are multiple answers, so awe face a choice. The state is a summary of the past.
Examining (5.13), it is evident that we need to remember the previous input, z(n — 1),
in order to produce an output y(n) (of course, we also need the current input, z(n), but
that is not part of the past; that is the present). So we can define the state to be

Vnelnts, s(n)=az(n-1).

Notice that, with this choice, the system is automaticaly initialy at rest if we use the
usual convention of assuming that the input is zero for negative time indices, z(n) =
0, n < 0. Given this choice of state, we need to choose a, b, ¢, and d so that (6.11) and
(5.12) are equivalent to (5.13). Let uslook first at (5.12), which reads

y(n) = cs(n) + dz(n).

Observing that s(n) = x(n — 1), can you determine ¢ and d? From (5.13), it is obvious
that c = d = 1/2.

Next, we determinea and b in

s(n+1) = as(n) + bx(n).

134 CHAPTERS. LINEAR SYSTEMS

Since s(n) = x(n — 1), it follows that s(n + 1) = z(n), and this becomes
z(n) = ax(n — 1) 4+ bz(n),

from which we can seethat a = 0 and b = 1.
Note that we could have chosen the state differently. For example,

Vnelnts, s(n)=z(n-1)/2

would work fine. How would that change a, b, ¢, and d?

In the following example, we use a state-space model to calculate the output of a system given an
input sequence.

Example 5.2: Consider a system in which the state s(n) is your bank balance at the
beginning of day n, and x(n) is the amount you deposit or withdraw during day n. If
xz(n) > 0, it means that you are making a deposit of x(n) dollars, and if z(n) < 0, it
means that you are withdrawing z(n) dollars. The output of the system at timeindex n
is the bank balance on day n. Thus?!

Sates = Inputs = Outputs = Reals.

Suppose that the daily interest rate isr. Then your balance at the beginning of day n+1
isgiven by
Vnelnts, s(n+1)=(1+7r)s(n)+ z(n). (5.14)
The output of the system is your current balance,
Vnelnts, y(n)=output(s(n),z(n)) = s(n).

Comparing to (5.12), we see that the state update and output functions are linear, with
a=14r,b=1¢ =1, and d = 0. Theinitial condition is initial Sate, your
bank balance at the beginning of day 0. Suppose the daily interest rate is 0.01, or one
percent.? Suppose that initial Sate = 100, and you deposit 1, 000 dollars on day 0 and

withdraw 30 every subsequent day for the next 30 days. What is your balance s(31) on
day 31?

You can compute s(31) recursively from

s(0) = 100,
s(1) = 1.01s(0) + 1000,
s(n+1) = 1.01s(n)—30, n=1,---,30

but this would be tedious. We can instead develop a formulathat is a bit easier to use.
We will do thisfor amore general problem.

! These sets are probably not, strictly speaking, equal to Reals, since deposits and withdrawals can only be awhole
number of cents. Also, most likely, the bank will round your balance to the nearest cent. Thus, our model here is an
approximation. Using Realsis a considerable simplification.

2 This would only be reasonable in a country with hyperinflation.

52. ONE-DIMENSIONAL SISO SYSTEMS 135

Suppose we are given an input sequence z(0), z(1), - - -. Asin the previous example, if we repeat-
edly use (5.11) we obtain the first few terms of a sequence,

s(0) = initialSate, (5.15)
s(1) = as(0)+ bz(0),
s(2) = as(1l)+bx(1) (5.16)

= a{as(0) + bz(0)} + bx(1)
= a?s(0) + abz(0) + bx(1),
s(3) = as(2)+bx(2) (5.17)
= a{a®s(0) + abz(0) + bx(10)} + bx(2)
= as(0) + a®bx(0) + abx (1) + bx(2),
(5.18)

Fromthisit isnot difficult to guessthe general pattern for the state response and the output sequence.
The state response of (5.11) is given by

n—1
s(n) = a™initialSate + Y. a""1""bx(m) (5.19)

m=0

for al n > 0, and the output sequence of (5.12) is given by

y(n) = ca™initial State + {nil ca™ 1 ="bx(m) + dx(n)} (5.20)
m=0

for all n > 0. We use induction to show that these are correct. For n = 0, (6.19) gives s(0) =
ainitial Sate = initial tate which matches (5.15), and hence is correct. 3

Now suppose that the right-hand side of (5.19) gives the correct value of the response for some
n > 0. We must show that it gives the correct value of the response for n + 1. From 6.11) and
using the hypothesis that (5.19) is the correct expression for s(n), we get

s(n+1) = as(n)+ bx(n)

n—1

= afa"initialSate + Z a1 b (m)} + ba(n)
m=0
n—1

= o"linitialSate + Z a" " "bx(m) + bx(n)
m=0

= a"tinitialSate + Y o™ bz (m).
m=0

which is the expression on the right-hand side of (6.19) for n + 1. It follows by induction that the
response isindeed given by (5.19) for all n > 0. Thefact that the output sequence is given by (6.20)
follows immediately from (5.12) and (5.19).

3 For any real number a, a° = 1 by definition of exponentiation.

136 CHAPTERS. LINEAR SYSTEMS

521 Zero-state and zero-input response

The expressions (5.19) for the state response and (5.20) for the output are each the sum of two terms.
The role of these two terms be better understood if we consider them in isolation.

If initialSate = 0, then the first term vanishes, and only the second term is left. This second term
is called the zero-state response. It gives the response of the system to an input sequence when the
initial state is zero. For many applications, particularly when modeling aphysical system, the zero-
state response is what we are interested in. For a physical system, the initial state of zero reflects
that the system isinitially at rest, meaning that itsinitial stateis zero. We will see that for asystem
to be linear, it must beinitialy at rest.

If the input sequence is zero, i.e. 0 = x(0) = z(1) = - - -, the second term vanishes, and only the
first termisleft. Thefirst termiscalled the zero-input response. It gives the response of the system
to someinitial condition, with no input stimulus applied. Of course, if the system isinitialy at rest
and the input is zero, then the state remains at zero.

So the right-hand side of both equations (5.19) and (5.20) are a sum of a zero-state response and a
zero-input response. To make it clear which equation we are talking about, we use the following
terminology:

zero-state state response The state sequence s(n) when the initial state is zero.
zero-input stateresponse | The state sequence s(n) when the input is zero.
zero-state output response | The output sequence s(n) when theinitial state is zero.
zero-input output response | The output sequence s(n) when the input is zero.

Let usfocus on the zero-state output response. Define the sequence

0, ifn<0
h(n) =< d, ifn=0 . (5.21)
n=lp ifn>1

Vn>0, yn) = Z h(n —m)z(m). (5.22)

Let z(n) = 0 for al n < 0, and, noting that 4(n) = 0 for al n < 0, we can write this

Vnelnts, y(n)= § h(n —m)x(m). (5.23)

m=—0o0

A summation of thisformis called a convolution sum. We say that y isthe convolution of h and x,
and write it using the shorthand

y=hx*xz.

52. ONE-DIMENSIONAL SISO SYSTEMS 137

The “*’ symbol represents convolution. By changing variables, defining & = n — m, it iseasy to
see that the convolution sum can aso be written

Vaelns, yn)= > h(k)zn— k). (5.24)

m=—0oQ

That is, h x x = x * h. Convolution sumswill be studied in much more detail in chapter 8.

Suppose the input x isgiven by x = §, where

1, ifn=0

vV n e Ints, (5(n)—{ 0. ifnt0

(5.25)

This function is called an impulse, or a Kronecker delta function (this function figures promi-
nently in chapters 7 and 8). If we substitute this into the convolution sum we get

Vnelnts, y(n)=h(n).

For this input, the output is simply given by the i function. For thisreason, h is called the impulse
response response, or more precisely, the zero-state impulse response of the system. Thus, if the
systemisinitialy at rest, its output is given by the convolution of the input and the impul se response.

Example 5.3: For our bank example, a =1+ r,b=1,c=1,andd = 0in (6.12).
The impulse response of the bank system is given by (6.21),

0, ifn<0
h(n)—{ A+t ifn>1 "

This represents the balance of a bank account with daily interest rate » if an initial
deposit of one dollar is put in on day O, and no further deposits or withdrawals are
made. Notice that since 1 4+ r > 1, the balance continues to increase forever. In fact,
such asystemiscalled aninfiniteimpulseresponse (11 R) system because the response
to animpulse never completely diesout. Thissystem isalso said to be unstable because
even though the input is always bounded, the output grows without bound.

Writing the output as a convolution, using (5.22), we see that

Y20, yin)= 3 (1 +r) T (),

m=0

This gives a relatively simple formula that we can use to calculate the bank balance
on any given day (although it will be tedious for large n, and you will want to use a
computer).

138 CHAPTERS. LINEAR SYSTEMS

Basics: Matrices and vectors

An M x N matrix A iswritten as

a1 ai2 - Q1N
a a PEEEEY a

A — 2,1 2,2 2N
apm1 GM2 r QM,N

The dimension of the matrix is said to be M x N, where the number of rowsis
aways given first, and the number of columnsis given second. In general, the coef-
ficients of the matrix are real or complex numbers, so they support all the standard
arithmetic operations. We write the matrix more compactly as

A=la;;,1 <i<M,1<j<N]|

or, even more simply as A = [a; ;] when the dimension of A is understood. The
matrix entries a; ; are called the coefficients of the matrix.

A vector is amatrix with only one row or only one column. An N-dimensional
column vector siswrittenasan N x 1 matrix

S1

52
S =

SN

An N-dimensional row vector 27 iswrittenasal x N matrix

2T =[21,29,, 2n]
The transpose of a M x N matrix A = [q; ;] isthe N x M matrix AT =
[aji]. Therefore, the transpose of an N-dimensional column vector s is the N-
dimensional row vector s’, and the transpose of a N-dimensional row vector z is
the N-dimensiona column vector z'.

From now on, unless explicitly stated otherwise, al vectors denoted s, x,y, b, ¢
etc. without the transpose notation are column vectors, and vectors denoted
sT 2T 4T b7, T with the transpose notation are row vectors.

A tuple of numeric values is often represented as a vector. A tuple, however, is
neither a “row” nor a “column.” Thus, the representation as a vector carries the
additional information that it is either arow or a column vector.

52. ONE-DIMENSIONAL SISO SYSTEMS 139

Basics: Matrix arithmetic

Two matrices (or vectors, since they are also matrices) can be added or subtracted
provided that they have the same dimension. Just as with adding or subtracting
tuples, the elements are added or subtracted. Thusif A = [g ;] and B = [b; ;] and
both have dimension M x N, then

Under certain circumstances, matrices can also be multiplied. If A has dimension
M x N and B hasdimension N x P, then the product AB is defined. The number
of columns of A must match the number of rows of B. Suppose the matrices are

given by
a1 a2 vt QLN big b2 - bip
as1 a2 -c AN ba1 bao -+ bop
A =) . B =) PR .« e Y ’
am,1 amM2 - GM,N bnvi bn2 - bap

Then the i, j element of the product C = AB is

N
Cij = Z az"mbmyj. (526)
m=1

The product has dimension M x P.

Of course, matrix multiplication also works if one of the matrices is a vector. If b
is acolumn vector of dimension N, then ¢ = Ab as defined by (5.26) is a column
vector of dimension M. If on the other hand 4! is a row vector of dimension M,
then ¢’ = b” A asdefined by (5.26) isarow vector of dimension N. By convention,
we write z”' to indicate a row vector, and z to indicate a column vector. Also by
convention, we (usualy) use lower case variable names for vectors and upper case
variable names for matrices.

Multiplying a matrix by a vector can be interpreted as applying a function to a
tuple. The vector isthe tuple and the matrix (together with the definition of matrix
multiplication) defines the function. Thus, in introducing matrix multiplication into
our systems, we are doing nothing new except introducing a more compact notation
for defining a particular class of functions.

A matrix A is asquare matrix if it has the same number of rows and columns.
A sgquare matrix may be multiplied by itself. Thus, A" for some integer n > 0
is defined to be A multiplied by itself n times. A° is defined to be the identity
matrix, which has ones along the diagonal and zeros everywhere else.

140 CHAPTERS. LINEAR SYSTEMS

5.3 Multidimensional SISO systems

The previous section considered systems of the form of figure5.1 where M = K = N = 1.
Systems with larger dimension, N > 1, have much more interesting (and useful) behavior. In this
section, we allow the dimension N to be larger, but keep the simplification that M = K = 1, sothe
systemis still SISO.

Recall that a linear function forms a linear combination of its arguments (see box on pagel132).
The most convenient way to describe such functions in the multidimensional case is using matrices
and vectors (see boxes on pages138 and 139). The state-space model for an N-dimensiona SISO
systemis

‘ s(n+1) = As(n) + bx(n) ‘ (5.27)

y(n) = c’'s(n) + dz(n) (5.28)

Thisisidentica to (5.11) and (5.12) except that A isan N x N matrix, and b, ¢ are N-dimensional
column vectors, so ¢! is an N-dimensiona row vector. As before, d isa scalar. It is conventional
to write the matrix with a capital A rather than the lower-case a used in 6.11).

The nextState function is given by
nextSate(s(n), z(n)) = As(n) + bx(n).

The result of evaluating this function isan N-dimensional vector. The N x N matrix A defines the
linear combination of the N elements of s(n) that are used to calculate the N elements s(n+1). The
N-dimensional column vector b defines the weights used to include x(n) in the linear combination
for each element of s(n + 1).

The output function is
output(s(n), z(n)) = ¢ s(n) + dz(n).

The N-dimensional row vector ¢ defines the linear combination of elements of s(n) that used to
calculate the output. The scalar d defines the weight used to include z(n) in the linear combination.

Example 5.4: Above we constructed a state-space model for a length-two moving
average. The genera form of thisisthe M -point moving average, given by

| M=l
Vnelnts, yn)= i Z x(n — k). (5.29)
k=0

To be specific, let’s suppose M = 3. Equation (5.29) becomes

Vnelnts, y(n)= %(m(n) +z(n—1)+z(n —2)). (5.30)

We can construct a state-space model for this in a manner similar to what we did for
the length-two moving average. First, we need to decide what is the state. Recall that
the state is the summary of the past. Equation (5.30) tells us that we need to remember

5.3. MULTIDIMENSIONAL SISO SYSTEMS

xz(n — 1) and z(n — 2), the two past inputs. We could define these to be the state,
collected as a column vector,

(Notice that we could have equally well put the elements in the other order.)

Consider the output equation (5.28). We need to determine ¢!’ and d. The vector ¢ is

arow vector with dimension N = 2, so we can fill in the blanks in the output equation
below

B x(n—1)

y(n) =[] l v —2) |)

It is easy to seethat each of the three blanks must be filled with 1 /A = 1/3 in order to

get (5.30). Thus,
_ | 1/3 _
C_[l/S]’ d=1/3.

Consider next the output equation (5.27). We need to determine A and b. The matrix A
is2 x 2. Thevector b isdimension 2 column vector. So we can fill in the blanks in the
output equation below

e [~][
S(n+1)_[x(n—1)]_l“ __1 [x(n—?)

From this, we can fill in the blanks, getting

o[t 3] e [1]

141

The state response is given by an expression similar to (.19), but involving matrices and vectors

rather than just scalars,

for al n > 0. The output sequence of (5.35) is given by

foraln > 0.

n—1
s(n) = AminitialSate + Y. A" 1"Mpg(m) (5.31)
m=0

n—1
y(n) = L ArinitialSate + { 3° T A"~ 1"mbx(m) + dx(n)} (5.32)
m=0

The zero-state impulse response, in terms of the state-space model, is the sequence of real numbers

h(O), h(1)7 h(2)7 U

0, ifn <0

T A, ifn>1

h(n)=14 d ifn=20 (5.33)

142 CHAPTERS. LINEAR SYSTEMS

This formula can be quite tedious to apply. It is usualy easier to smply let = = 0, the Kronecker
delta function, and observe the output. The output will be the impulse response. The zero-state
output response is given by convolution of this impulse response with the input, 6.24).

Example 5.5: We can find the impulse response h of the moving average system of
(5.29) by letting =z = §, where § is given by (5.25). That is,

1 M—-1
Vnelnts, hn)= 1 > 5(n—k).
k=0

Now, é(n — k) = 0 except when n = k, at which point it equals one. Thus,

0 ifn<0
h(n)=< 1/M if0<n<M
0 ifn>M

Thisfunction, therefore, isthe impulse response of an M -point moving average system.
Thisresult could also have been obtained by comparing 6.29) to (5.24), the output asa
convolution. Or it could have been obtained by constructing a state-space model for the
general length-A moving average, and applying (6.33). However, this latter method
would have proved the most tedious.

Notice that in the previous example, the impulse response is finite in extent (it starts at 0 and stops
at M —1). For thisreason, such asystem iscalled afiniteimpulseresponse system or FIR system.

Example 5.6: The M-point moving average can be viewed as a special case of the
more general FIR system given by

M-1
Vnelnts, y(n)= Z h(k)x(n — k).
k=0

Letting h(k) = 1/M for 0 < k < M, we get the M -point moving average. Choosing
other values for h(k), however, we can get other responses (this will be explored in
chapter 7).

A state-space model for the FIR system is constructed by again deciding on the state.
A reasonable choiceisthe M — 1 past samples of the input,

s(n)=[z(n—1),z(n —2), -, z(n — M + 1)]T,

acolumn vector. The state-space model is then given by 6.27) and (5.28) with

0 0 0 -+ 0 0 1 h(1)
1 0 0 0 -0 0 0 h(2)
A=|l0 1 0 0 -0 0 |,b= o= - ,
. . . 0 h(M —2)

o
]
o
o
—_
e
o
>
S
|
—_
N

54. MULTIDIMENSIONAL MIMO SYSTEMS 143

d = h(0)
Notice that the model that we found in example5.4 hasthisform. The (M —1) x (M —
1) matrix A has coefficients a;1,; = 1, while al other coefficients are zero. Thisisa
rather special form of the A matrix, limited to FIR systems. The vector b has the first
coefficient equal to 1, while all others are zero.

54 Multidimensional MIMO systems

In the above sections, the input and output were both scalars. A multiple-input, multiple-output
(MIMO) system is only slightly more complicated. A state-space model for such asystem is

Vnelnts, s(n+1) = As(n)+ Bx(n) (5.34)

y(n) = Cs(n)+ Dx(n) (5.35)

where, s(n) € Reals”, z(n) € RealsM and y(n) € Reals®, for any integer n. Aisan N x N
(square) matrix, Bisan N x M matrix, C isa K x N matrix, and D isa K x M matrix. Now

that these are all matrices, it is conventional to write them with capital letters. Each matrix has fixed
(given) coefficients, and the set of four matrices define the system.

Let initialSate € Reals” be agiven initial state. Let 2(0), z(1), z(2), - - -, be a sequence of inputs
in Reals™ (each input is avector of dimension). The state response of (6.34) is given by

n—1

s(n) = A"initial Sate + Z A" B (m) (5.36)
m=0
for al n > 0, and the output sequence of (5.35) is given by
n—1
y(n) = C A"initial Sate + {Z CA"'"™Bx(m) + Dx(n)} (5.37)
m=0

foraln > 0.

As before, the right-hand side of these equations are the sum of a zero-input response and a zero-
state response. Consider the zero-state output response,

n—1
y(n) = Z CA™™ 1= Bg(m) (5.38)
m=0
for al n > 0. Define the sequence 1 (0), (1), h(2), - - - of K x M matrices by
D, ifn=20
hln) = { CA 1B, ifn>1 (539

(Notice that this can no longer be called an impulse response, because this system cannot be given
asimple impulse as an input. The input has to have dimension A). From (6.38) it follows that the
zero-state output response is given by
y(n) = Z h(n —m)xz(m), n >0 (5.40)
m=0

Thisis once again a convolution sum.

144 CHAPTERS. LINEAR SYSTEMS

5.5 Linear systems

In the systems that this chapter considers, the nextState and output functions are linear. Recall (see
box on page 132) that afunction f: X — Y islinear if (and only if) it satisfies the superposition
property, i.e. for al z;, x5 € X, and w, u € Reals,

‘f(wxl +uxe) = wf(xy) —I-Uf(fﬁg)‘

What does it mean for a systemto be linear? Recall that asystem S isafunction S: X — X, where
X isasigna space. For the systems in this chapter, X = [Ints — Reals|. The function S is defined
by (5.37), which gives y = S(x), given . So the answer isobvious. S isalinear system if Sisa
linear function.

Examining (5.37), or its simpler SISO versions, (5.20) or (5.32), it is easy to see that superposition
is satisfied if initialSate is zero. Hence, a system given by a state-space model that is initialy at
rest isalinear system. The superposition property turns out to be an extremely useful property, as
we will discover in the next chapters.

5.6 Continuous-time state-space models

A continuous-time state-space model for alinear SISO system has the form
2(t) = Az(t) + bu(t) (5.41)

w(t) = cz(t) + dv(t) (5.42)

where

e 2:Reals — Reals" givesthe state response;
e Z(t) isthe derivative of z evaluated at t € Reals;;
e v:Reals — Realsistheinput signal; and

e w:Reals — Realsisthe output signal.

As with the discrete-time SISO model, A isan N x N matriX, b and c are N x 1 column vectors,
and d isascdar.

The major difference between this model and that of (5.27) and (5.28) is that instead of giving
new state as a function of the input and the old state, (6.41) gives the derivative of the state. The
derivative of avector z issimply the vector consisting of the derivative of each element of the vector.
A derivative, of course, givesthetrend of the state at any particular time. Giving atrend makes more
sense than giving a new state for a continuous-time system, because the state evolves continuously.

5.6. CONTINUOUS-TIME STATE-SPACEMODELS 145

Probing further: Approximating continuous-time systems

Linear systems often arise as approximations of continuous-time systems that are
described by differential equations. Those differential equations may describe the
physics. A differential equation is of the form

VteRedls, A(t) = g(z(t), v(t)). (5.43)

Here t € Reals stands for continuous time, z : Reals — Reals" is the state re-
sponse, and v : Reals — Reals" isthe input signal. That is, at any time ¢, z(t)
is the state and v(t) is the input. The notation Z stands for derivative of the state
response z with respect to ¢, so ¢: Reals¥ x Reals” — Reals isagiven function
specifying the derivative of the state. Specifying the derivative of the state is simi-
lar to specifying a state update. Recall that a derivative is a normalized difference
over an infinitesimally small interval. A continuous-time system can be thought of
as one where the state updates occurs in intervals that are so small that the state
evolves continuously rather than discretely.

In general, z isan N-tuple, z = (z,---,2n), Where z;: Reals; — Reals. The
derivative of an N-tuple is simply the N-tuple of derivatives, z = (4, -, 2n).
We know from calculus that

£(1) = dz _ lim z(t+9) — 2(t)

N dt 6—0 0 ’

and so, if § > 0 isasmall number, we can approximate this derivative by

i) ~ z(t + 5()5 - z(t)

Using this for the derivative in the left-hand side of (6.43) we get
z(t+9) — 2(t) = 0g(2(t),v(t)). (5.44)

Suppose we look at this equation at sampletimest = 0, §, 26, - - -. Let us denote the
value of the state response at the n-th sample time by s(n) = z(nd), and the value
of theinput at this same sampletime by z(n) = v(nd). In terms of these variables,
(5.44) becomes

s(n+1) — s(n) = 6g(s(n), ()

which we can write as a state update equation,

s(n+1) = s(n) + dg(s(n), z(n)).

146 CHAPTERS. LINEAR SYSTEMS

All of the methods that we have developed for discrete-time systems can also be developed for
continuous-time systems. However, they get somewhat more challenging mathematically because
the summations become integrals. We leave it to a more advanced text to explore this.

A continuous-time state-space model may be approximated by a discrete-time state-space model
(see box). In fact, this approximation forms the basis for most computer simulations of continuous-
time systems. Simulation of continuous-time systems is explored in 1abC.6.

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some thought,
requires conceptualization. Many of the problems require using Matlab.

1. E Construct a SISO state-space model for a system whose input and output are related by
Vnelnts, yn)=z(n—-1)+z(n—2).

You may assume the system isinitially at rest. It is sufficient to give the A matrix, vectors b
and ¢, and scalar d of (5.27) and (5.28).

2. E The A matrix in (5.27) for aSISO systemis
11
A= [L] .
Calculate the zero-input state response if
(@) theinitial stateis[1,0]7,
(b) theinitia stateis |0, 1]7,
(©) theinitial stateis[1,1]7.
3. E Consider the one-dimensional state-space model, V n € Ints,
s(n+1) =s(n)+xz(n)
y(n) = s(n)

Suppose the initial stateis z(0) = a for some given constant a. Find another constant b such
that if the first three inputs are z(0) = x(1) = z(2) = b, then y(3) = 0. Note: In general,
problems of this type are concerned with controllability. The question is whether you can
find an input (in this case constrained to be constant) such that some particular condition on
the output is met. The input becomes a control signal.

4. E A SISO LTI system has the A matrix given by
01
and the b vector by [0, 1]7. Suppose that s(0) = [0,0]7. Find the input sequence x(0), x(1)
so that the state at step 2 is s(2) = [1, 2]7.

5.6. CONTINUOUS-TIME STATE-SPACEMODELS 147

5. E Suppose the A matrix of atwo-dimensional SISO system is

cos(m/6) sin(w/6)

A=01 _Gn(r/6) cos(n/6) |

Suppose the initial state is s(0) = [1,0]", and the input is zero. Sketch the zero-input state

responseforn = 0,1, ---, 12 for the cases
@ oc=0

(b) 0 =0.9

(c) o=11

6. E Inthis problem we consider the bank balance example further. Asin the example, suppose
initialState = 100, and you deposit 1,000 dollars on day 0 and withdraw 30 dollars every
subsequent day for the next 30 days.

(8) Write aMatlab program to compute your bank balance s(n),0 < n < 31, and plot the
result.

(b) Use formula (5.19) to calculate your bank balance at the beginning of day 31. The
following identity may prove useful:

N+1

N
O
= 1—a

7. E Use Matlab to calculate and plot the impul se response of the system

s(n+1) = as(n)+bx(n)
y(n) = cs(n)

for the following cases:

@ a=1.1
(b) a=1.0
(©) a=0.9
(d a=-05

whereinal cases,b =c=1andd = 0.

8. E Consider the 2-dimensional system with
_ | cos(w) —sin(w) _lo [B
A_[Sin(W) COS(W)]’ _[I]vc—lol,d—o,
(@ Showthatforaln=0,1,2,---

sin(nw) cos(nw)

A l cos(nw) —sin(nw)] ,

148 CHAPTERS. LINEAR SYSTEMS

Hint: use induction and the identities
cos(a + 3) = cos(a) cos(B) — sin(a) sin(fF)
sin(a + 3) = sin(a) cos(3) + cos(a) sin(B)
(b) Find the zero-input state response and the zero-input response for the initial state
initial Sate = [0,1)7.
Hint: This systemis called an oscillator because it oscillates without external stimulus.
(c) Find the zero-state impulse response.

9. E A SISO state-space model is expressed in the form

s(n+1) = As(n)+bz(n)
y(n) = cl's(n)+dz(n)

where Aisa N x N matrix, b,c and s(n) are N x 1 column vectors, and d, z(n),y(n) are
scalars. Assume theinput is x isthe output isy.

(&) Write down the expression for the zero-state impulse response, i.e. what is the output
when theinitial state x(0) = 0, and u(n) = d(n), the Kronecker delta function.

(b) Suppose

| cos(f) sin(B) 1 B B
A= [—sin(f) cos(6)]’ b= []’ c'=00 1] d=1

Find the zero-state impul se response.
Hint: for all n > 0,
A — l cos(nf) sin(nb)]

—sin(nf) cos(nf)

Chapter 6

Frequency Domain

We are generally interested in manipulating signals. We may wish to synthesize signals, as modems
need to do in order to transmit a voice-like signal through the telephone channel. We may instead
wish to analyze signals, as modems need to do in order to extract digital information from areceived
voice-like signal. In general, the field of communications is all about synthesizing signals with
characteristics that match a channel, and then analyzing signals that have often been corrupted by
the channel in order to extract the original information.

We may also wish to synthesize natural signals such as images or speech. The field of computer
graphics puts much of its energy into synthesizing natural-looking images. Image processing
includes image under standing, which involves analyzing images to determine their content. The
field of signal processing includes analysis and synthesis of speech and music signals.

We may wish to control a physical process. The physical process is sensed (using temperature,
pressure, position and speed sensors). The sensed signals are processed in order to estimate the
internal state of the physical process. The physical process is controlled on the basis of the state
estimate. Control system design includes the design of state estimators and controllers.

In order to analyze or synthesize signals, we need models of those signals. Since a signd is a
function, a model of the signal is a description or a definition of the function. We will use two
approaches. The first is a declarative (what is) approach. The second is an imperative (how to)
approach. These two approaches are complementary. Depending on the situation, one approach is
better than the other.

Signals are functions. This chapter in particular deals with signals where the domain is time (dis-
crete or continuous). It introduces the concept of frequency-domain representation of these signals.
The idea is that arbitrary signals can be described as sums of sinusoidal signals. This concept is
first motivated by referring to psychoacoustics, how humans hear sounds. Sinusoidal signals have
particular psychoacoustic significance. But the real justification for the frequency domain approach
is much broader. It turns out to be particularly easy to understand the affect that LTI systems, dis-
cussed in the previous chapter, have on sinusoidal signals. A powerful set of analysis and design
techniques then follow for arbitrary signals and the LTI systems that operate on them.

149

150 CHAPTER 6. FREQUENCY DOMAIN

Csharp --
e E -

Time in seconds x10°

Figure 6.1: Graph of a major triad, showing its three sinusoidal components
and their sum.

6.1 Frequency decomposition

For some signals, particularly natural signals like voice, music, and images, finding a concise and
precise definition of the signal can be difficult. In such cases, we try to model signals as composi-
tions of simpler signals that we can more easily model.

Psychoacoustics isthe study of how humans hear sounds. Pure tones and their frequency turn out to
be a very convenient way to describe sounds. Musical notes can be reasonably accurately modeled
as combinations of relatively few pure tones (although subtle properties of musical sounds, such as
the timbre of a sound, are harder to model accurately).

When studying sounds, it is reasonable on psychoacoustic grounds to decompose the sounds into
sums of sinusoids. It turns out that the motivation for doing this extends well beyond psychoacous-
tics. Pure tones have very convenient mathematical properties that make it useful to model other
types of signals as sums of sinusoids, even when there is no psychoacoustic basis for doing so. For
example, there is no psychoacoustic reason for modeling radio signals as sums of sinusoids.

Consider the range of frequencies covering one octave, ranging from 440Hz to 880 Hz. “Octave’
is the musical term for a factor of two in frequency. The frequencies 440 Hz and 880 Hz both
correspond to the musical note A, but one octave apart. The next higher A in the musical scale
would have the frequency 1760 Hz, twice 880 Hz. In the western musical scale, there are 12 notes
in every octave. These notes are evenly distributed (geometrically), so the next note above A, which
is B flat, has frequency 440 x /2, where ¥/2 ~ 1.0595. The next note above B flat, which is B,
has frequency 440 x V/2 x /2.

In table 6.1, the frequencies of the complete musical scale between middle A and A-880 are shown.
Each frequency is 5 = ¥/2 times the frequency below it.

Frequencies that are harmonically related tend to sound good together. Figure6.1 shows the graph
of asignal that isamajor triad, acombination of the notes A, Ci (C sharp), and E. By “ combination”
we mean “sum.” The A isasinusoidal signal at 440 Hz. It is added to a Cf, which is a sinusoidal

6.1. FREQUENCY DECOMPOSITION 151

Basics: Frequenciesin Hertz and radians

A standard measure of frequency is Hertz, abbreviated Hz. It means cycles per
second. Below isaplot of one second of four sine waves of different frequencies:

1.0[

05[

0.0[

-05[

-1.0L

Time in seconds

For example, the frequencies in Hertz of the musical note A on the piano keyboard
are

fl = 557f2 = 1]-07f3 = 2207f4 = 4407
f5 =880, fg = 1760, fr = 3520, fg = 7040.

A sinusoidal waveform x with frequency f; = 440 can be defined by
Vte Reals, z(t) = sin(440 x 2xt).

The factor 27 in this expressions is a nuisance. An argument to a sine function has
units of radians, so 27 has units of radians/cycle. Explicitly showing all the units
(in sguare brackets), we have

440|cycles/second] x 2x[radians/cycle|t[seconds] = (440 x 2xt)[radians]|.

To avoid having to keep track of the factor 27 everywhere, it is common to use the
aternative units for frequency, radians per second. The symbol w is commonly
used to denote frequencies in radians per second, while f isused for frequenciesin
Hertz. The relationship between Hertz and radians per second is simple,

w=2nf,

asis easily confirmed by checking the units. Thus, in radians per second, the fre-
guencies of the musical note A on the piano keyboard are

w1 = 27 X 55wy = 27 X 110, w3 = 27 x 220,w, = 27 x 440,
ws = 27 X 880, ws = 21 X 1760, w7 = 21 X 3520, wg = 27 x 7040.

152 CHAPTER 6. FREQUENCY DOMAIN

Basics: Ranges of frequencies

An extremely wide range of frequencies is used by electrical engineers. The fol-
lowing abbreviations are common:

e Hz - hertz, cycles per second.

e kHz - kilohertz, thousands of cycles per second.

e MHz - megahertz, millions of cycles per second.

e GHz - gigahertz, billions of cycles per second.
Audible sounds signals are in the range of 20 Hz to 20 kHz. Sounds above this
frequency are called ultrasonic. Electromagnetic waves range from less than one

hertz (used speculatively in seismology for earthquake prediction) through visible
light near 10> Hz to cosmic ray radiation up to 10?°> Hz.

A 880
Ab | 831
G | 784
Fi | 740
F | 608
E | 659
Dt | 622
D | 587
Ct | 554
C | 523
B | 494
Bb | 466
A | 440

Table 6.1: Frequencies of notes over one octave of the western musical
scale.

6.1. FREQUENCY DECOMPOSITION 153

Time in seconds x10°

Figure 6.2: A sound waveform for an A-440 with more interesting timbre.

signal at 554 Hz. This sum is then added to an E, which is a sinusoidal signal at 659 Hz. Each of
the components is also shown, so you can verify graphically that at each point in time, the value of
the solid signal is equal to the sum of values of the dashed signals at that time.

The stimulus presented to the ear is the solid waveform. What you hear, however, assuming asmall
amount of musical training, is the three sinusoidal components, which the human ear interprets as
musical notes. The human ear decomposes the stimulus into its sinusoidal components.

Example6.1: The major triad signa can be written as a sum of sinusoids
s(t) = sin(440 x 27t) 4 sin(bb4 x 27t) 4 sin(659 x 27t),

for al ¢ € Reals. The human ear hears as distinct tones the frequencies of these si-
nusoidal components. Musical sounds such as chords can be characterized as sums of
pure tones.

Purely sinusoidal signals, however, do not sound very good. Although they are recognizable as
notes, they do not sound like any familiar musical instrument. Truly musical sounds are much more
complex than a pure sinusoid. The characteristic sound of an instrument is its timbre, and as we
shall see, some aspects of timbre can also be characterized as sums of sinusoids.

Timbre is due in part to the fact that musical instruments do not produce purely sinusoidal sounds.
Instead, to afirst approximation, they produce sounds that consist of afundamental sinusoidal com-
ponent and harmonics. The fundamental is at the frequency of the note being played, and the
harmonics are at multiples of that frequency. Figure6.2 shows awaveform for asound that is heard
as an A-220 but has a much more interesting timbre than a sinusoidal signal with frequency 220
Hz. In fact, this waveform is generating by adding together sinusoidal signals with frequencies 220
Hz, 440 Hz, 880 Hz, 1320 Hz, and higher multiples, with varying weights. The 220 Hz compo-
nent is called the fundamental, while the others are caled harmonics. The relative weights of the
harmonics is amajor part of what makes one musical instrument sound different from another.

154

CHAPTER 6. FREQUENCY DOMAIN

Probing further: Circle of fifths

The western musical scale is based on our perception of frequency and the har-
monic relationships between frequencies. The following frequencies al correspond
to the note A:

110, 220, 440, 880, 1760, and 3520.

What about 440 x 3 = 1320? Notice that 1320/2 = 660, which is almost exactly
the Eintable6.1. Thus, 440 x 3 isthe note E, one octave above the E above A-440.
E and A are closely harmonically related, and to most people, they sound good
together. It is because

440 x 3 ~ 659 x 2

The notes A, Ct, and E form amajor triad. Where does the Ct come from? Notice
that
440 x 5 ~ 554 x 4.

Among al the harmonic relationships in the scale, A, Ct, and E have one of the
simplest. Thisisthe reason for their pleasing sound together.

For more arcane reasons, the interval between A and E, which is a frequency rise
of approximately 3/2, is called afifth. The note 3/2 (afifth) above E has frequency
988, which is one octave above B-494. Another 3/2 above that is approximately
F sharp (740 Hz). Continuing in this fashion, multiplying frequencies by 3/2, and
then possibly dividing by two, you can approximately trace the twelve notes of the
scale. Thisprogression is called the circle of fifths. The notion of key and scale in
music are based on this circle of fifths, as is the fact that there are 12 notes in the
scale.

Table 6.1 is calculated by multiplying each frequency by /2 to get the next higher
frequency, not by using the circle of fifths. Indeed, the ¥/2 method applied twelve
times yields a note that is exactly one octave higher than the starting point, while
the circle of fifths only yields an approximation. The /2 method yields the well-
tempered scale. This scale was popularized by the composer J. S. Bach. It sounds
much better than a scale based on the circle fifths when the range of notes spans
more than one octave.

6.2. PHASE 155

Sinusoid with Five Phases

| Phase 1 —
Phase 2 -
- Phase 3 --
Phase 4 --
Y | Phase5 -

05[¢

0.0 &'

-1.0L

Time in seconds x10°

Figure 6.3: Five sinusoidal signals with different phases.

6.2 Phase

A sinusoidal sound has not just a frequency, but also a phase. The phase may be thought of as
the relative starting point of the waveform. Figure6.3 shows five sinusoidal signals with the same
frequency but five different phases. These signals al represent the sound A-440, and al sound
identical. For a simple sinusoidal signal, obviously, phase has no bearing on what the human ear
hears.

Somewhat more surprising isthat when two or more sinusoids are added together, the relative phase
has a significant impact on the shape of the waveform, but no impact on the perceived sound. The
human ear isrelatively insensitive to the phase of sinusoidal components of asignal, even though the
phase of those components can strongly affect the shape. If these waveforms represent something
other than sound, like stock prices for example, the effect of phase could be quite significant. For
asinusoida signal, the phase affects whether a particular point in time corresponds to a peak or a
valley, for example. For stock prices, it makes a difference whether you sell at a high or alow.

There are certain circumstances in which the human ear is sensitive to phase. In particular, when
two sinusoids of the same frequency combine, the relative phase has a big impact, since it affects
the amplitude of the sum. For example, if the two sinusoids differ in phase by 180 degrees (7
radians), then when they add, they exactly cancel, yielding a zero signal. The human brain can use
the relative phase of a sound in the two ears to help spatially locate the origin of a sound. Also,
audio systems with two speakers, which simulate spatialy distributed sounds (“stereo”), can be
significantly affected by the relative phase of the signal produced by the two speakers.

Phase is measured in either radians or degrees. An A-440 can be given by
g(t) = sin(440 x 27t + ¢),
for dl t € Reals, where ¢ € Realsisthe phase. Regardless of the value of ¢, this signal is still an

A-440. If ¢ = 7 /2 then
g(t) = cos(440 x 2mt).

156 CHAPTER 6. FREQUENCY DOMAIN

Figure 6.4: Images that are sinusoidal horizontally, vertically, and both.

6.3 Spatial frequency

Psychoacoustics provides a compelling motivation for decomposing audio signals as sums of sinu-
soids. In principal, images can also be similarly decomposed. However, the motivations in this case
are more mathematical than perceptual .

Figure 6.4 shows three images that are sinusoidal. Specifically, the intensity of the image (the
amount of whitelight that isreflected by the page) varies spatially according to asinusoidal function.
In the leftmost image, it varies horizontally only. There is no vertical variation in intensity. In the
middle image, it varies vertically only. In the rightmost image, it varies in both dimensions.

The sinusoidal image has spatial frequency rather than temporal frequency. Its units are cycles per
unit distance. The images in figure 6.4 have frequencies of roughly 2.5 cycles/inch. Recall that a
grayscale picture is represented by afunction

Image : Vertical Space x Horizontal Space — Intensity.

So an image that varies sinusoidally along the horizontal direction (with a spatial period of H
inches) and is constant along the vertical direction is represented by

Va € Vertical Space Vy € HorizontalSpace Image(z, y) = sin(2my/H).

Similarly, an image that varies sinusoidally along the vertical direction (with a spatial period of V'
inches) and is constant along the horizontal direction is represented by

Vax € VerticalSpace Yy € HorizontalSpace Image(z, y) = sin(2rx/V).
An image that varies sinusoidally along both directions is represented by
Vz € VerticalSpace Vy € HorizontalSpace Image(x, y) = sin(2nz/V') x sin(2wy/H).

These sinusoidal images have much less meaning than audio sinusoids, which we perceive as musi-
cal tones. Nonetheless, we will see that images can be described as sums of sinusoids, and that such
description is sometimes useful.

6.4. PERIODICAND FINITE SIGNALS 157

6.4 Periodic and finite signals

When the domain is continuous or discrete time, we can define a periodic signal. Assuming the
domain is Reals, a periodic signal x with period p € Realsisone wherefor al ¢ € Reals

‘x(t) :x(t—kp).‘ (6.2)

A signal with period p also has period 2p, since
x(t) = x(t +p) = z(t + 2p).

Infact, it has period K p, for any positive integer K. Usually, we define the period to be the smallest
p such that
VteReals, z(t)=x(t+p).

Example 6.2: Thesinusoidal signal « wherefor al ¢ € Reals
x(t) = sin(wot)
isaperiodic signal with period 27 /wy since for all ¢ € Reals

sin(wo(t + 27 /wp)) = sin(wot).

A periodic signal isdefined over aninfiniteinterval. If the domain isinstead asubset [a, b] C Reals,
for somefinite a and b, then we call this afinite signal.

Example 6.3: Thesigna y wherefor al ¢ € [0, 27 /wo],
y(t) = sin(wot)
isafinite signal with duration 27 /wy. Thisinterval spans exactly one cycle of the sine

wave.

A finite signal with duration p can be used to define a periodic signal with period p. All that is
needed is to periodically repeat the finite signal. Formally, given afinite signal y: [a,b] — Reals,
we can define asignal i/: Reals — Reals by

VteReals y(t) = {g(t) gtt’f]efv\gg’] 6.2)

In other words, v/(t) issimply y(t) inside its domain, and zero elsewhere. Then the periodic signal
can be given by

2(t) = Xz ¥/ (t —mp) (6.3)

where p = b — a. Thisiscalled a shift-and-add summation, illustrated in figure6.5. The periodic
signal is asum of versions of ¢/(¢) that have been shifted in time by multiples of p. Do not let the

158 CHAPTER 6. FREQUENCY DOMAIN

infinite sum intimidate: all but one of the terms of the summation are zero for any fixed ¢! Thus, a
periodic signal can be defined in terms of afinite signal, which represents one period. Conversely,
afinite signa can be defined in terms of a periodic signal (by taking one period).

We can check that = given by (6.3) isindeed periodic with period p,

x(t+p) = i y'(t+p—mp) = i y'(t—(m—1)p)

m=—oo m=—oQ

=S Y k) = a0,

k=—o00
by using a change of variables, k = m — 1.

It is aso important to note that the periodic signal « agrees with y in the finite domain [a, b] of v,
since

Vt € [a,b] xz(t) = i y'(t — mp)
= y(t)+)y (t—mp)
m##0
= y(),

because, by (6.2), for t € [a,b], ¥/ (t) = y(t) and ¥/ (t — mp) = 0 if m # 0.

We will see that any periodic signal, and hence any finite signal, can be described as a sum of
sinusoidal signals. This result, known as the Fourier series, is one of the fundamental tools in
electrical engineering.

6.5 Fourier series

A remarkable result, due to Joseph Fourier, 1768-1830, is that a periodic signal x: Reals — Reals
with period p € Reals can (usualy) be described as a constant term plus a sum of sinusoids,

x(t) = Ag + kioj Ay, cos(kwot + o) (6.4)
=1

This representation of « is called its Fourier series. The Fourier series is widely used for signal
analysis. Each term in the summation is a cosine with amplitude 4, and phase ¢;. The particular
values of A, and ¢ depend on x, of course. The frequency wy, which has units of radians per
second (assuming the domain of x is in seconds), is called the fundamental frequency, and is

related to the period p by

In other words, a signal with fundamental frequency wy has period p = 27 /w. The constant term
Ap is sometimes called the DC term, where “DC” stands for direct current, a reference back to

6.5. FOURIER SERIES 159

y(t+p)

o>
V.—p
M

Figure 6.5: By repeating the finite signal y we can obtain a periodic signal
xX.

160 CHAPTER 6. FREQUENCY DOMAIN

the early applications of this theory in electrical circuit analysis. Thetermswhere k > 2 are called
harmonics.

Equation (6.4) is often called the Fourier series expansion for x because it expands z in terms of
its sinusoidal components.

If we had a facility for generating individual sinusoids, we could use the Fourier series represen-
tation (6.4) to synthesize any periodic signal. However, using the Fourier series expansion for
synthesis of periodic signals is problematic because of the infinite summation. But for most practi-
cal signas, the coefficients A, become very small (or even zero) for large &, so afinite summation
can be used as an approximation. A finite Fourier seriesapproximation with K + 1 terms has the
form

z(t) = Ao + § Ay, cos(kwot + o). (6.5)
k=1

Even when an infinite summation is used, the expansion of a periodic waveform is not always exact.
There are some technical mathematical conditions that = must satisfy for it to be exact (see box).
Fortunately, these conditions are met almost always by practical, real-world time-domain signals.

Example 6.4: Figure 6.6 shows a square wave with period 8 msec and some finite
Fourier series approximations to the square wave. Only one period of the square wave
is shown. Notice in figure 6.6(a) that the K = 1 approximation consists only of the
DC term (which is zero in this case) and a sinusoid with an amplitude dightly larger
than that of the square wave. Its amplitude is depicted in figure6.6(b) as the height
of the largest bar. The horizontal position of the bar corresponds to the frequency
of the sinusoid, 125 Hz, which is 1/(8 msec), the fundamental frequency. The K =
3 waveform is the sum of the K = 1 waveform and one additional sinusoid with
frequency 375 Hz and amplitude equal to the height of the second largest bar in figure
6.6(b).

A plot like that in figure 6.6(b) is called a frequency domain representation of the square wave,
because it depicts the square wave by the amplitude and frequency of its sinusoidal components. Ac-
tually, a complete frequency domain representation also needs to give the phase of each sinusoidal
component.

Notice in figure 6.6(b) that all even terms of the Fourier series approximation have zero amplitude.
Thus, for example, there is no component at 250 Hz. This is a consequence of the symmetry of the
sguare wave, athough it is beyond the scope of work now to explain exactly why.

Also notice that as the number of terms in the summation increases, the approximation more closely
resembl es a square wave, but the amount of its overshoot does not appear to decrease. Thisisknown
as Gibb’s phenomenon. In fact, the maximum difference between the finite Fourier series approx-
imation and the square wave does not corverge to zero as the number of terms in the summation
increases. In this sense, the square wave cannot be exactly described with a Fourier series (see box
on page 164). Intuitively, the problem is due to the abrupt discontinuity in the square wave when it
transitions between its high value and its low value.

6.5. FOURIER SERIES

ideal —
1.0 K=1
L i) K=3--
05[¥/ Ko
00l 4 K=32
05 7]
-1.0L]
0 1 2 3 4 5 6 7 8
Time in seconds x10°
@
T T T T T T T T T
1.2 T
1.0 T
0.8[T
0.6 T
041 | -
0.2[T
oof _Ul_ III||||II|II|I|||||||I_

0.0 0.5 1.0 15 2.0 25 3.0 35 4.0

Frequency in Hz x10

(b)

Figure 6.6: (a) One cycle of a square wave and some finite Fourier series
approximations. (b) The relative amplitudes of the Fourier series terms for

the square wave.

161

162 CHAPTER 6. FREQUENCY DOMAIN

10[7 ideal —
K=1
05 1 K=3--
K=7-
0.0 4 K=32
05 7]
1.0 i
0 1 2 3 4 5 6 7 8
Time in seconds x10°
@
T — T T T T T T T T
0.8 7
0.6[T
04 7
0.2 7
o0L _H_ I:I R i
1 1 1 1 1 1 1 1 1

0.0 0.5 1.0 15 2.0 25 3.0 35 4.0

Frequency in Hz x10

(b)

Figure 6.7: (@) One cycle of a triangle wave and some finite Fourier series
approximations. (b) The relative amplitudes of the Fourier series terms for
the triangle wave.

6.5. FOURIER SERIES 163

Example 6.5: Figure 6.7 shows some finite Fourier series approximations for atrian-
gle wave. Thiswaveform has no discontinuities, and therefore is much better behaved.
Notice that its Fourier series components decrease in amplitude much more rapidly
than those of the square wave. Moreover, the time-domain approximations appear to
be much more accurate with fewer terms in the finite summation.

Many practical, real-world signals, such as audio signals, do not have discontinuities, and thus do
not exhibit the convergence problems exhibited by the square wave. Other signals, however, such
as images, are full of discontinuities. A (spatial) discontinuity in an imageis simply an edge. Most
images have edges. For such signals, we have to keep in mind that a Fourier series representation is
aways an approximation. It is, nonetheless, an extremely useful approximation.

Example 6.6: Consider an audio signal given by
s(t) = sin(440 x 27t) 4 sin(550 x 27t) + sin(660 x 27t).

Thisisamajor triad in anon-well-tempered scale. Thefirst toneis A-440. Thethird is
approximately E, with afrequency 3/2 that of A-440. The middle term is approximately
Ct, with a frequency 5/4 that of A-440. It isthese simple frequency relationships that
result in a pleasant sound. We choose the non-well-tempered scale because it makes
it much easier to construct a Fourier series expansion for this waveform. We leave the
more difficult problem of finding the Fourier series coefficients for a well-tempered
major triad to exercise 3.

To construct the Fourier series expansion, we can follow these steps:

1. Find p, the period. The period is the smallest number p > 0 such that s(t) =
s(t — p) for @l t in the domain. To do this, note that

sin(2w ft) = sin(27 f(t — p))

if fpisaninteger. Thus, we want to find the smallest p such that 440p, 550p,
and 660p are all integers. Equivaently, we want to find the largest fundamental
frequency fo = 1/p such that 440/ fy, 550/ fo, and 660/ fo are al integers. Such
an fy is caled the greatest common divisor of 440, 550, and 660. This can be
computed using the gcd function in Matlab. In this case, however, we can do it
in our heads, observing that f; = 110.

2. Find Ay, the constant term. By inspection, there is no constant component in s(t),
only sinusoidal components, so 4y = 0.

3. Find A4, the fundamental term. By inspection, there is no component at 110 Hz,
s0 A; = 0. Since A; = 0, ¢ isimmaterial.

4. Find A,, the first harmonic. By inspection, there is no component at 220 Hz, so
Ay = 0.

5. Find As. By inspection, there is no component at 330 Hz, so A3 = 0.

164

CHAPTER 6. FREQUENCY DOMAIN

Probing further: Convergence of the Fourier series

The Fourier series representation of a periodic signal z is alimit of a sequence of
functions x for N = 1,2, --- where

N
Vt € Reals, xN(t) =Ag+ Z Ay, COS(kWot + ¢k)
k=1

Specifically, when the Fourier series representation exists, then for al ¢t € Reals,

x(t) =]\;Enoo xn(t).
A particularly desirable form of convergence for thislimit isunifor m convergence,
in which for each real number e > 0, there exists a positive integer M such that for
al t € Realsand for al N > M,

|z(t) —xn(t)| <€

A sufficient condition for uniform convergence is that the signal x is continuous
and that itsfirst derivative is piecewise continuous.

A square wave, for example, is not continuous, and hence does not satisfy this
sufficient condition. Indeed, the Fourier series does not converge uniformly, as
you can see in figure 6.6 by observing that the peak difference between x(¢) and
x i (t) does not decrease to zero. A triangle wave, however, is continuous, and hasa
piecewise continuous first derivative. Thus, it does satisfy the sufficient condition.
Its Fourier series approximation will therefore converge uniformly, as suggested in
figure 6.7.

See for example R. G. Bartle, The Elements of Real Analysis, Second Edition,
John Wiley & Sons, 1976, p. 117 (for uniform convergence) and p. 337 (for this
sufficient condition).

6.5. FOURIER SERIES 165

6. Find A4. Thereis acomponent at 440 Hz, sin(440 x 27t). We need to find A4
and ¢, such that

Ay cos(440 x 27t + ¢4) = sin(440 x 27t).

By inspection, ¢, = —7/2 and A4 = 1.

7. Smilarly determine that As = Ag = 1, ¢5 = ¢¢ = —n/2, and that al other
terms are zero.

Putting this al together, the Fourier series expansion can be written

6

s(t) = Z cos(kwot — 7/2)

k=4

where wy = 27 fy = 2207.

Clearly the method used in the above example for determining the Fourier series coefficients is
tedious and error prone, and will only work for simple signals. We will see much better techniques
in Chapter 7.

6.5.1 Uniquenessof the Fourier series

Suppose z: Reals — Realsis a periodic function with period p. Then the Fourier series expansion
isunique. In other wordsiif it is both true that

x(t) = Ag + Z Ay, cos(kwot + o)
k=1

and

x(t) = By + Z By, cos(kwot + 0y),
k=1

where wy = 27/p, then it must also be true that
Vk>0, Ap= B;and¢g, mod2r = 6, mod 2.

(The modulo operation is necessary because of the non-uniqueness of phase.) Thus, when we talk
about the frequency content of a signal, we are talking about something that is unique and well
defined. For a suggestion about how to prove this uniqueness, see problem9.

6.5.2 Periodic, finite, and aperiodic signals

We have seen in section 6.4 that periodic signals and finite signals have much in common. One can
be defined in terms of the other. Thus, a Fourier series can be used to describe a finite signal as
well as a periodic one. The “period” is simply the extent of the finite signal. Thus, if the domain

166 CHAPTER 6. FREQUENCY DOMAIN

04

-0.2[

-04 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time in seconds

(@

0.2 .

0.1 7]

0.0 7]

0.1 T
-0.21 i

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

x10
(b)
T T L T T T T T T
0.10 M]
0.08 []
0.06 7]
0.04]
0.02 ’_lr]
0.00 | cmmmim Wl’l‘l'l‘rﬂ'ﬂ-u—rl—.-.—.—ﬂ-u—n—.l“ e i
1 1 1 1 1 1 1 1 L
0.0 0.5 1.0 1.5 2.0 25 3.0 35 4.0
x10°
(©)

Figure 6.8: (a) A 1.6 second train whistle. (b) A 16 msec segment of the
train whistle. (c) The Fourier series coefficients for the 16 msec segment.

6.6. DISCRETE-TIME SIGNALS 167

of the signal is [a,b] C Reals, then p = b — a. The fundamental frequency, therefore, is just
wo = 27/(b — a).

An aperiodic signal, like an audio signal, can be partitioned into finite segments, and a Fourier series
can be constructed from each segment.

Example 6.7 Consider the train whistle shown in figure6.8(a). Figure 6.8(b) shows
a segment of 16 msec. Notice that within this segment, the sound clearly has a some-
what periodic structure. It is not hard to envision how it could be described as sums of
sinusoids. The magnitudes of the A;, Fourier series coefficients for this 16 msec seg-
ment are shown in figure 6.8(c). These are calculated on a computer using techniques
we will discuss later, rather than being calculated by hand as in the previous example.
Notice that there are three dominant frequency components that give the train whistle
its tonality and timbre.

6.5.3 Fourier seriesapproximationsto images

Images are invariably finite signals. Given any image, it is possible to construct a periodic image by
just tiling a plane with theimage. Thus, there is again a close relationship between a periodic image
and afinite one.

We have seen sinusoidal images (figure6.4), so it follows that it ought to be possible to construct a
Fourier series representation of animage. The only hard part is that images have atwo-dimensional
domain, and thus are finite in two distinct dimensions. The sinusoidal images in figure6.4 have a
vertical frequency, ahorizontal frequency, or both.

Suppose that the domain of an image is [a,b] x [¢,d] C Reals x Reals. Let py = b — a, and
py = d — c represent the horizontal and vertical “periods’ for the equivalent periodic image. For
constructing a Fourier series representation, we can define the horizontal and vertical fundamental
frequencies as follows:

WH = 2T / PH

wy = 2m/py
The Fourier series representation of Image: [a, b] X [c,d] — Intensity is

o0 o0
Image(z, y) = Z Z A m cos(kwpx + ¢f) cos(mwyy + ©m)
k=0m=0
For convenience, we have included the constant term 4, o in the summation, so we assume that
oo = po = 0. (Recall that cos(0) = 1).

6.6 Discrete-timesignals

Consider signas of the form z:Ints — Reals, which are discrete-time signals. Discrete-time
signals can be decomposed into sinusoidal components much like continuous-time signals. There
are some minor subtleties, however.

168 CHAPTER 6. FREQUENCY DOMAIN

Basics: Discrete-time frequencies

When the domain of asigna is Ints, then the units of frequency are cycles/sample.
Consider for example the discrete-time signal given by

Vn € Ints, z(n) = cos(2w fn).

Suppose this represents an audio signal that is sampled at 8000 samples/second.
Then to convert f to Hertz, just watch the units:

fleycles/sample] x 8000[samples/second] = 8000 f[cycles/second).
The frequency could have been equally well given in units of radiang/sample, asin
x(n) = cos(wn).
for al n € Ints. To convert w to Hertz,

wlradians/sample] x 8000[samples/second] x (1/27)[cycles/radian]
= (8000w /27)[cycles/second).

6.6.1 Periodicity

A discrete-time signal is periodic if there isanon-zero integer p € Ints such that

‘Vn €lnts, z(n+p) = m(n)‘

Note that, somewhat counterintuitively, not all sinusoidal discrete-time signals are periodic. Con-
sider
x(n) = cos(2mw fn). (6.6)
For this to be periodic, we must be able to find a non-zero integer p such that for al integers n,
x(n+p) = cos(2mfn+ 2w fp) = cos(2n fn) = z(n).
Thiscan betrueonly if (27 fp) isan integer multiple of 27. |.e., if thereis some integer m such that

2w fp = 2mm.

Dividing both sides by 27p, we see that this signal is periodic only if we can find nonzero integers
p and m such that

f=m/p.
In other words, f must be rational. Only if f isrational isthis signal periodic.

6.6. DISCRETE-TIME SIGNALS 169

Example 6.8: Consider adiscrete-time sinusoid x given by
Vnelnts, z(n)= cos(4rn/5).
Putting this into the form of (6.6),
z(n) = cos(2m(2/5)n),

we see that it has frequency f = 2/5 cycles/sample. If this were a continuous-time
sinusoid, we could invert this to get the period. However, the inverse is not an integer,
so it cannot possibly be the period. Noting that the inverse is 5/2 samples/cycle, we
need to find the smallest multiple of this that is an integer. Multiply by 2, we get 5
samples/(2 cycles). So the period isp = 5 samples.

In general, for a discrete sinusoid with frequency f cycles/sample, the period isp = K/ f, where
K > 0isthe smallest integer such that K/ f is an integer.

6.6.2 Thediscrete-timeFourier series

Assume we are given a periodic discrete-time signal « with period p. Just as with continuous-time
signals, this signal can be described as a sum of sinusoids, called the discrete-time Fourier series
(DFS) expansion,

K
z(n) = Ao+ Z Ay, cos(kwon + o) (6.7)
k=1

where

K- (p—1)/2 if pisodd
p/2 if piseven

Unlike the continuous-time case, the sum isfinite. Intuitively, this is because discrete-time signals
cannot represent frequencies above a certain value. We will examine this phenomenon in more
detail in chapter 10, but for now, it proves extremely convenient. Mathematically, the above relation
is much simpler than the continuous-time Fourier series. All computations are finite. There are a
finite number of signal values in one period of the waveform. There are afinite number of termsin
the Fourier series representation for each signal value. Unlike the continuous-time case, it is easy
for computers to manage this representation. Given afinite set of values, 4, -- -, Ax, a computer

can calculate x(n). Moreover, the representation is exact for any periodic signal. No approximation
is needed, and there is ho question of convergence. In the continuous-time case, the Fourier series
representation is accurate only for certain signals. For the discrete-time case, it is always accurate.

The DFS can be calculated efficiently on a computer using an algorithm called the fast Fourier
transform (FFT). All of the Fourier series examples that are plotted in this text were calculated
using the FFT algorithm.

170 CHAPTER 6. FREQUENCY DOMAIN
Exercises

Note: each problem is annotated with the letter E, T, C which stands for exercise, requires some
thought, requires some conceptualization. Problemslabeled E are usually mechanical, those labeled
T require aplan of attack, those labeled C usually have more than one defensible answer.

1. E In(6.1) we defined periodic for continuous-time signals.

(@) Definefinite and periodic for images.
(b) Definefinite and periodic for discrete-time signals, where the domain is Ints.
2. E Which of the following signals is periodic with a period greater than zero, and what is that

period? All functions are of the form x: Reals — Comps. The domain is time, measured in
seconds, and so the period isin seconds.

(@ VteReals, x(t)=10sin(27t)+ (10 4 2i) cos(2mt)
(b) V¢ € Reals, x(t) = sin(27t) + sin(v/27t)
() Vt € Reals, x(t)=sin(2y2nt) + sin(v/27t)

3. T Determine the fundamental frequency and the Fourier series coefficients for the well-
tempered mgjor triad,

s(t) = sin(440 x 27t) 4 sin(bb4 x 27t) 4 sin(659 x 27t).

4. E Define z: Reals — Reals
Vit e Reals, x(t) = 5cos(wot + m/2) 4+ 5cos(wot — m/6) + 5 cos(wot — 27/3).

Find A and ¢ so that
VteReals, x(t) = Acos(wot + ¢).

5. T Inthisproblem, we examine a practical application of the mathematical result in problem4.

In particular, we consider multipath interference, a common problem with wireless systems
where multiple paths from a transmitter to a receiver can result in destructive interference of
asignal.
When atransmitter sends aradio signal to areceiver, the received signal consists of the direct
path plus severa reflected paths. In figure6.9, the transmitter is on atower at the left of the
figure, the receiver is the telephone in the foreground, and there are three paths: the direct
path is [y meterslong, the path reflected from the hill is; meters long, and the path reflected
from the building is l; meters long.

Suppose the transmitted signal isa f Hz sinusoid x: Reals — Reals,
VteReals, x(t) = Acos(2nft)

So the received signal isy such that V ¢ € Reals,

y(t) = agAcos(2m f(t — %0)) + ajAcos(2m f(t — %)) + agAcos(2m f(t — %)) (6.8)

6.6. DISCRETE-TIME SIGNALS 171

Here, 0 < o; < 1 arenumbersthat represent the attenuation (or reduction in signal amplitude)
of thesignal, and ¢ = 3 x 10® m/sisthe speed of light.! Answer the following questions.

@
(b)

(©

(d)

()

()

(9)

Explain why the description of y given in (6.8) is a reasonable model of the received
signal.

What would be the description if instead of the 3 paths as shown in figure6.9, there
were 10 paths (one direct and 9 reflected).

The signals received over the different paths cause different phase shifts, ¢, so the
signal y (with three paths) can also be written as

2
VteReals, y(t)= Z apAcos(2mft — o)
k=0

What are the ¢, ? Give an expression in terms of f, [, and c.

Let & = max{¢1 — ¢o, P2 — o} bethe largest difference in the phase of the received
signalsand let L = max{l; — ly, l2 — lp} be the maximum path length difference. What
isthe relationship between &, L, f?

Suppose for simplicity that there is only one reflected path of distance i, i.e. take
ag = 0 inthe expressions above. Then & = ¢ — ¢9. When ® = 7, the reflected signal

issaid to destroy the direct signal. Explain why the term “destroy” is appropriate. (This
phenomenon is called destructive interference.)

In the context of mobile radio shown in thefigure, typically L < 500m. For what values
of fis® < 7/10? (Notethat if ® < /10 the signals will not interact destructively by
much.)

For the two-path case, drive an expression that relates the frequencies f that interfere
destructively to the path length difference L = § — Ip.

6. T The function z: Reals — Reals is given by its graph shown in figure 6.10. Note that
Vt¢g[0,1], x(t) =0,and x(0.4) = 1. Definey by

VteReas, y(t)= i x(t — kp)

k=—o00

where p isthe period.

@

(b)
(©
(d)
(€)

Prove that y is periodic with period p, i.e.

Vt e Reals, y(t) = y(t+p).
Plot y for p = 1.
Plot y for p = 2.

Plot y for p = 0.8.
Plot y for p = 0.5.

*In reality, the reflections are more complicated than the model here.

172 CHAPTER 6. FREQUENCY DOMAIN

reflected paths

Ny

direct path

Figure 6.9: A direct and two reflected paths from transmitter to receiver.

Figure 6.10: The graph of x.

6.6. DISCRETE-TIME SIGNALS 173

(f) Suppose the function z is obtained by advancing = by 0.4, i.e.
VteReals, z(t)=uxz(t+04).
Define w by

VteReals, w(t)= Z z(t — kp)
k=—o00

What is the relation between w and y. Use thisrelation to plot w for p = 1.
7. T Suppose z: Reals — Realsisaperiodic signal with period p, i.e.
VteReals, z(t)=x(t+p).
Let f: Reals — Reals be any function, and define the signal y: Reals — Realsby y = f o x,
- vteReals, y(t) = f(a(t)).
(&) Provethat y is periodic with period p.
(b) SupposeV t € Reals, x(t) = sin(2nt). Suppose f isthe sign function, V a € Reals,

ifa<0

Plot x and y.

(c) SupposeVt € Reals, x(t) = sin(27t). Suppose f isthe squarefunction, V « € Reals,
f(z) =22 Ploty.

8. C Suppose the periodic square wave shown on the left in Figure6.11 has the Fourier series
representation

Ao + Z Ay cos(2mkt /p + o)
k=0
Use thisto obtain a Fourier series representation of the two-dimensional pattern of rectangles
on the right. Note that the vertical and horizontal periods [, w are different.

9. T Suppose A;, € Comps, wi, € Reals, and k£ = 1, 2, such that
Ve Reals, Aje“tt = Ayt (6.9

Show that A; = A; and w; = ws. Hint: Evaluate both sides of (6.9) at ¢t = 0, and evaluate
their derivatives at t = 0.

Discussion: This result shows that in order for two complex exponential signals to be equal,
their frequencies, phases, and amplitudes must be equal. More interestingly, this result can
be used to show that if a signal can be described as a sum of complex exponential signals,
then that description isunique. Thereis no other sum of complex exponentials (oneinvolving
different frequencies, phases, or amplitudes) that will also describe the signal. In particular,
the Fourier series representation of a periodic signal is unique, as stated above in theorem
6.5.1.

174 CHAPTER 6. FREQUENCY DOMAIN

~—>
2p3 23| v
>
~—>

2h3

R
h

Figure 6.11: A periodic square wave (left) and a periodic pattern (right).

Chapter 7

Freguency Response

A class of systems that yield to sophisticated analysis techniques is the class of linear time-
invariant (LTI) systems. LTI systems have a key property: given a sinusoidal input, the output
isasinusoidal signal with the same frequency, but possibly different amplitude and phase.

We can justify describing audio signals as sums of sinusoids on purely psychoacoustic grounds.
However, because of this property of LTI systems, it is often convenient to describe any signal as
sums of sinusoids, regardless of whether thereis apsychoacoustic justification. Thereal valuein this
mathematical device isthat by using the theory of LTI systems, we can design systems that operate
more-or-less independently on the sinusoidal components of asignal. For example, abrupt changes
in the signal value require higher frequency components. Thus, we can enhance or suppress these
abrupt changes by enhancing or suppressing the higher frequency components. Such an operation
is called filtering because it filters frequency components. We design systems by crafting their
frequency response, their response to sinusoidal inputs. An audio equalizer, for example, is afilter
that enhances or suppresses certain frequency components. Images can aso be filtered. Enhancing
the high frequency components will sharpen the image, whereas suppressing the high frequency
components will blur the image.

State-space models described in previous chapters are precise and concise, but in a sense, not as
powerful as afrequency response. For an LTI system, given a frequency response, you can assert a
great deal about the relationship between an input signal and an output signal. Fewer assertions are
practical in general with state-space models.

LTI systems, in fact, can also be described with state-space models, using difference equations and
differential equations, as explored in chapter 5. But state-space models can also describe systems
that are not LTI. Thus, state-space models are more general. It should come as no surprise that the
price we pay for this increased generality is fewer analysis and design techniques. In this chapter,
we explore the (very powerful) analysis and design techniques that apply to the special case of LTI
systems.

175

176 CHAPTER 7. FREQUENCY RESPONSE

D+1.O(X)

Figure 7.1: lllustration of the delay system D.. D_g4(z) is the signal x to
the left by 0.4, and D4 ¢(z) is x moved to the right by 1.0.

7.1 LTI systems

LTI systems have received a great deal of intellectual attention for two reasons. First, they are
relatively easy to understand. Their behavior is predictable, and can be fully characterized in fairly
simple terms, based on the frequency domain representation of signals that we introduced in the
previous chapter. Second, many physical systems can be reasonably approximated by them. Few
physical systems perfectly fit the model, but many fit very well within a certain range of operation.

7.1.1 Timeinvariance

Consider the set of signals whose domain is Reals, interpreted as time. Such signals are functions
of time or time-domain signals. Thisincludes al audio signals, for example. For such signals, we
can define a system called a delay operator D, so that if = isafunction of time, then D, (x) isthe
new function of time given by

VteReds, (Dr(z))(t)=a(t— 1) (7.1)

Positive values of T result in positive delays, despite the subtraction in (¢ — 7). Any delay results
in ashifting left or right of the graph of asignal, as shown in figure7.1.

For sinusoidal signals time delay and phase changes are equivaent, except for the fact that phase is
measured in radians (or degrees) rather than in time. In addition, a phase change of ¢ is equivalent
to a phase change of g + n2x for any integer n. Phase applies to sinusoidal signals, whereas delay
applies to any signal that is a function of time.

The space of al real-valued time-domain signals is denoted by [Reals — Reals|. So the delay
operator isamapping from [Reals — Realg| to itself:

D, : [Reals — Reals| — [Reals — Reals|,

7.1. LTI SYSTEMS 177

y

Dt —>

Figure 7.2: Time invariance implies that the top and bottom systems pro-
duce the same output signal for the same input signal.

where for each time-domain signal z, the time-domain signal D, () is given by (7.1).

Systems that map functions of time to functions of time are called time-domain systems. D
is atime-domain system. Audio systems are time-domain systems. Suppose that S : [Reals —
Reals) — [Reals — Reals| isatime-domain system. S issaid to be timeinvariant if

SoD,=D;oS.

Figure 7.2 illustrates this equivalence, where the left hand side, S o D, is shown on top, and the
right hand side, D, o.S, isshown on the bottom. It isvery important to understand what this compact
definition means. Since S and D, are both functions from [Reals — Reals] to [Reals — Realg|,
S o D, isdso afunction from [Reals — Reals] to [Reals — Reals|. Itsvalue at any x is given by
S(D-(z)). Similarly, D o S isaso afunction from [Reals — Reals] to [Reals — Reals|. Itsvalue
axzisD,(S(x)).

S istime-invariant if for dl z,

| S(D;(x)) = D,(S(2))]
That is, if welet z = D, (x) andy = H(z), asinfigure 7.2, then

VieReas, (D(y)(t) =yt 1) = (S()(0).

In pictures, time invariance implies that the upper and lower systems in figure7.2 have identical
behavior. A time-invariant system is one whose behavior (its response to inputs) does not change
with time.

Time invariance is amathematical fiction. No electronic system istime invariant in the strict sense.
For one thing, such a system is turned on at some point in time. Clearly, its behavior before it is
turned on is not the same as its behavior after it is turned on. Nevertheless, it proves to be a very
convenient mathematical fiction, and it is a reasonable approximation for many systems if their

178 CHAPTER 7. FREQUENCY RESPONSE

behavior is constant over arelatively long period of time (relative to whatever phenomenon we are
studying). For example, your audio amplifier is not a time-invariant system. Its behavior changes
drastically when you turn it on or off, and changes less drastically when you raise or lower the
volume. However, for the duration of a compact disc, if you leave the volume fixed, the system can
be reasonably approximated as being time invariant.

Some systems have a similar property even though they operate on signals whose domain is not
time. For example, the domain of an image is aregion of a plane. The output of an image process-
ing system may not depend significantly on where in the plane the input image is placed. Shifting
the input image will only shift the output image by the same amount. This property which general-
izes time invariance and holds for some image processing systems, is called shift invariance (see
problem 3).

7.1.2 Linearity

Consider the set of signals whose range is Reals or Comps. Such signals are called real-valued
functions or complex-valued functions. Since real-valued functions are a subset of complex-
valued functions, we only need to talk about complex-valued functions. Suppose x is a complex-
valued function and « is a complex constant. Then we can define a new complex-valued function
ax such that for al ¢ in the domain of z,

(az)(t) = a(z(t)).
In other words, the new function, which we call az, is simply scaled by the constant a.

Similarly, given two complex-valued functions = and y, we can define anew function (z + y) such
that for ¢ in the domain of x (and domain of y),

(z +y)(t) = () +y(t).

Consider the set of all systems that map complex-valued functions to complex-valued functions.
Such systems are called complex systems. Suppose that S is a complex system. S is said to be
linear if for all « € Compsand for al = and y that are complex-valued functions,

‘ S(azx) = aS(x) ‘

and

[S(z+y) = S(z) + S(y)|

The first of these says that if you scale the input, the output is scaled. The second one says that if
the input is described as the sum of two component signals, then the output can be described as the
sum of two signals that would result from the components alone.

In pictures, the first property says that the two systems in figure7.3 are equivalent if .S is linear.
Here, the triangle represents the scaling operation. The second property says that the two systems
figure 7.4 are equivalent.

7.1. LTI SYSTEMS 179

X
_>>— S L
X

Figure 7.3: Linearity implies that these two systems are equivalent. The
triangle is a system that scales a signal by some real constant a.

Figure 7.4: Linearity implies that these two systems are also equivalent.

180 CHAPTER 7. FREQUENCY RESPONSE

Linearity is a mathematical fiction. No electronic system is linear in the strict sense. A system is
designed to work with a range of input signals, and arbitrary scaling of the input does not tranglate
into arbitrary scaling of the output. If you provide an input to your audio amplifier that is higher
voltage than it is designed for, then it is not likely to just produce louder sounds. Itsinput circuits
will get overloaded and signal distortion will result. Nonetheless, asamathematical fiction, linearity
is extremely convenient. It says that we can decompose the inputs to a system and study the effect
of the system on the individual components.

7.1.3 Linearity and time-invariance

For time-domain systems, time-invariance is a useful (if fictional) property. For complex (or real)
systems, linearity isauseful (if fictional) property. For complex (or real) time-domain systems, the
combination of these properties is extremely useful. Linear time-invariant (LTI) systems turn out to
have particularly simple behavior with sinusoidal inputs.

Given a sinusoid at the input, the output of the LTI system will be a sinusoid with
the same frequency, but possibly with different phase and amplitude.

It then follows that

Given an input that is described as a sum of sinusoids of certain frequencies, the
output can be described as a sum of sinusoids with the same frequencies, but with
(possible) phase and amplitude changes at each frequency.

A straightforward way to show that LTI systems have these properties starts by considering complex
exponentials. A complex exponential isasignal x € [Reals — Comps| where

VteReals, x(t)=e“! = cos(wt)+isin(wt).

Complex exponential functions have an interesting property that will prove useful to us. Specifically,
VteRealsand 7 € Reals, (t — 1) = ¢“(77) = 7w it
Thisfollows from the multiplication property of exponentials,
obte — obec
Since D, (z)(t) = z(t — 7), we have
D.(x) = azx, wherea = ¢ ™7, (7.2)

In words, a delayed complex exponential is a scaled complex exponential, where the scaling con-
stant is the complex number a = ¢=*7,

7.1. LTI SYSTEMS 181

We will now show that if the input to an LTI system is ¢«%, then the output will be H (w)e“?,
where H(w) is aconstant (not afunction of time) that depends on the frequency w of the complex
exponential. In other words, the output is only a scaled version of the input.

When the output of a system is only a scaled version of the input, the input is called an eigen-
function, which comes from the German word for “same.” The output is (almost) the same as the
input.

Complex exponentias are eigenfunctions of LTI systems, as we will now show. Thisis the most
important reason for the focus on complex exponentias in electrical engineering. This single prop-
erty underlies much of the discipline of signal processing, and is used heavily in circuit anaysis,
communication systems, and control systems.

Givenan LTI system S : [Reals — Comps| — [Reals — Comps], let 2 be an input signal where
VteReals, x(t)=e“"

Recall that time invariance implies that

SoD.=D,0S8.

Thus
From (7.2),

where a = e=*7, and from linearity,

aS(x) = D.(S(x)).
Let y = S(z) be the corresponding output signal, so
ay = D (y).

In other words, A
VteReals, e ™“Ty(t)=yt—r1).

In particular, thisistruefor ¢t = 0, so
V7 eReals, y(—7)=e“Ty(0).
Changing variables, letting t = —7 , we note that this implies that
VtcReals, y(t) = e“iy(0).

Since y(0) is a constant (it does not depend on ¢, athough it does depend on w), this establishes
that the output is a complex exponential, just like the input, except that it is scaled by y(0). Since

182 CHAPTER 7. FREQUENCY RESPONSE

y(0) in this case is a property of the system, and in general it depends on w, we define the function
H:Reals — Comps by

Vwe Reals, H(w)=y(0)=(S(x))(0), (7.3

where '
VtecReds, x(t) =e“t

That is, H(w) isthe output at time zero when the input is a complex exponential with frequency w.

Using this notation, we write the output y as

VteReals, y(t)=H(w)e™!

when the input is ¢“f. Note that H(w) is a function of w € Reals, the frequency of the input
complex exponential.

The function H : Reals — Compsis called the frequency response. It defines the response of the
LTI system to a complex exponential input at any given frequency.

7.1.4 Discrete-timelLTI systems

For discrete-time systems, the situation is similar. An N-sample delay is written Dy. A system
S: X — Yistimeinvariant if foral z € X andfor dl N € Ints,

| S(Dn () = Dn(S(x))-| (7.4)

The system islinear if for al x € X and for al a € Reals,

‘ S(ax) = aS(x) ‘

andforalz e X anda' € X

S(z +2') = S(z) + S(a)

By reasoning identical to that above, if the input is adiscrete complex exponential,

Vaclints, z(n)=ewn

then the output is the same complex exponential scaled by a constant (a complex number that does
not depend on time),

Vzelnts, y(n)=Hw)e“"

H is once again called the frequency response, and since it is a function of w, and is possibly
complex valued, it has the form H: Reals — Comps.

There is one key difference, however, between discrete-time systems and continuous-time systems.
Since n is an integer, notice that

i(w+4m)n

iwn i(w+2m)n __
—e ,

e =€

7.2. FINDING AND USING THE FREQUENCY RESPONSE 183

and soon. That is, adiscrete complex exponentia with frequency w isidentical to adiscrete complex
exponential with frequency w + 2K, for any integer K. The frequency response, therefore, must
be identical at these frequencies, since the inputs are identical. |.e.,

H(w)=H(w+2Km)
for any integer K. That is, a discrete-time frequency response is periodic with period 27r.

7.2 Finding and using the frequency response

We have seen that if the input to an LTI system is a complex exponential signal x € [Reals —
Comps| where

Vt € Reals, x(t) = e“! = cos(wt) + isin(wt).

then the output is

y(t) = H(w)e™". (7.5)

where H(w) is (possibly complex-valued) number that is a property of the system. H (w) is called
the frequency response at frequency w. A similar

Example 7.1: Consider the delay system D, given by 7.1. Suppose the input to the
delay isthe complex exponentia = given by

Vtc Reals, x(t) = e,
Then the output y satisfies
VteReas, y(t)= t=T) = gmiwT vt
Comparing thisto (7.5) we see that the frequency response of the delay is
H(w) =e T,

Example 7.2: Consider the discrete-time m-sample delay Dy: [Ints — Reals] —
[Ints — Reals] such that for al = € [Ints — Reals] and n € Ints,

(Dn(x))(n) = z(n — N).

If theinput to the delay isx and the output is y, then the delay is given by the difference
equation
Vnelnts, y(n)=ax(n—N). (7.6)

Thisis an LTI system, so if the input is z(n) = ¢+, then the output is H (w)e“",
where H is the frequency response. We can determine the frequency response using
this fact by plugging this input and output into (7.6),

H(w)eiwn _ 6iu.)(an) _ eiwnefin.
Eliminating ™™ on both sides we get
H(w) =e WV,

184 CHAPTER 7. FREQUENCY RESPONSE

Basics: Sinusoidsin terms of complex exponentials

Euler’s formula states that

e = cos(0) + isin(6).
The complex conjugate is

e~ = cos(6) — isin(h).

Summing these, ‘ ‘
¥ + e = 2¢0s(6)

or

cos() = (e + =) /2.

Thus, for example, ' '
cos(wt) = 1/2(™" + ™).

Similarly,

sin(g) = —i(e? — =) /2.

In appendix A we show that many useful trigonometric identities are easily derived
from these simple relations.

The technique in the previous example can be used to find the frequency response of much more
complicated systems. Simply replace the input z in a difference equation like (7.6) with /™, and

replace the output y with H (w)e™", and then solve for H(w).

Example 7.3: Consider adiscrete-time, length two moving average, given by
Vnelnts, y(n)=(xn)+zn-1))/2,
where z isthe input and y is the output. When the input is ¢+, this becomes
H(w)e™" = (e + ¢« 1) /2,
Solving for H (w), wefind that the frequency response is
H(w) = (1+e7%)/2.

Complex exponentials asinputs are rather abstract. We have seen that with audio signals, sinusoidal
signals are intrinsically significant because the human ear interprets the frequency of the sinusoid
asitstone. Note that areal-valued sinusoidal signal can be given as a combination of exponential

signals (see box), ‘ A
cos(wt) = (et +e7") /2.

7.2. FINDING AND USING THE FREQUENCY RESPONSE 185

Tipsand Tricks: Phasors

Consider agenera continuous-time sinusoidal signal,
Vte Reals, z(t) = Acos(wt+ ¢).

Here A isthe amplitude, ¢ is the phase, and w is the frequency of the sinewave.
(We call this asinewave, even though we are using cosine to describe it.) The units
of ¢ areradians. The units of w are radians per second, assuming ¢ is in seconds.
This can be written

x(t) = Re{Aeiwt+¢} = Re{Ae"%“t} = Re{XeM}

where X = A is called the complex amplitude or phasor. The representation

z(t) = Re{ X e} (7.7)

is called the phasor representation of x. It can be convenient.

Example 7.4: Consider summing two sinusoids with the same fre-
quency,

x(t) = Aj cos(wt + ¢1) + Az cos(wt + ¢2).
Thisis particularly easy using phasors, since

o(t) = Re{(X1+ Xz)e™'}
= | X1 + Xs|cos(wt + £(X7 + X2))

where X; = A€t and Xy = A9e®2. Thus, addition of the sinusoids
reduces to addition of two complex numbers.

The exponential X ¢! in (7.7) is complex valued. If we represent it in a two-
dimensiona plane asin figure7.5, it will rotate in a counter-clockwise direction as
t increases. The frequency of rotation will be w radians per second. At time O it
will be X, shown in gray. The real-valued sinewave z(t) isthe projection of X ¢«
on the real axis, namely

Re{Xe™!) = | X | cos(wt + /X).

The sum of two sinusoids with the same frequency is similarly depicted in figure
7.6. The two phasors, X; and X, are put head to tail and then rotated together. A
similar method can be used to add sinusoids of different frequencies, but then the
two vectors will rotate at different rates.

186 CHAPTER 7. FREQUENCY RESPONSE

wt éx

)Im

Re{ !ei ol = |X| cos(wt + OX)

Figure 7.5: Phasor representation of a sinusoid.

<-. .
e (XX gt

)Im

|X1¥X2| cos(wt + [X;+X5))

Figure 7.6: Phasor representation of the sum of two sinusoids with the same
frequency.

7.2. FINDING AND USING THE FREQUENCY RESPONSE 187

Thus, if thisisthe input to an LTI system H, then the output will be
y(t) = (H(w)e™" + H(-w)e™™")/2.
Many (or most) LTI systems are not capable of producing complex-valued outputs when the input

is rea, so this y(¢) must be real. This implies that H(w)é“? and H(—w)e~*! must be complex
conjugates of one another, which in turn implies that

H(w)=H"(-w). (7.8)

This property is called conjugate symmetry. The frequency response of area system (one whose
input and output signals are real-valued) is conjugate symmetric. Thus,

Vt e Reals, y(t) = Re{H(w)e™t}.

If wewrite H(w) in polar form,
H(w) = [H(w)e“),

then when the input is cos(wt), the output is

VteReals, y(t) = |H(w)|cos(wt + /H(w)).|

Thus, H(w) gives the gain |H (w)| and phase shift /H (w) that a sinusoidal input with frequency
w experiences. |H(w)| is called the magnitude response of the system, and / H (w) is called the
phase response.

Example 7.5: Thedeay D, of example 7.1 has frequency response
H(w) = e ™7,
The magnitude response is
[H(w)| = 1.

Thus, any cosine input into a delay yields a cosine output with the same amplitude
(obvioudly). A filter with a constant unity magnitude response is called an allpass
filter, because it passes al frequencies equally. An N sample delay is a particularly
simple form of an allpass filter.

The phase response is
/H(w) = —wT.

Thus, any cosine input yields a cosine output with phase shift —wr.

The discrete-time delay of example 7.2 isalso an alpassfilter. Its phase response is

/H(w) = —wN.

188 CHAPTER 7. FREQUENCY RESPONSE

0.9 b

0.8 b

0.7 i

0.5 b

0.3 A

0.2 b

0.1r b

0 I I I I I I
0 0.5 1 15 2 25 3

frequency in radians/sample

Figure 7.7: The magnitude response of a length-two moving average.

Example 7.6: The magnitude response of the length-two moving average considered
inexample7.3is '
[H(w)| = [(1+e7)/2|.

We can plot this using the following Matlab code, which (after adjusting the labels)
resultsin figure 7.7.

omega = [0: pi/250:pi];
H= (1 + exp(-i*omega))/?2;
pl ot (onega, abs(H));

Notice that at frequency zero (a cosine with zero frequency has constant value), the
magnitude response is 1. That is, a constant signal gets through the filter without any
reduction in amplitude. Thisisexpected, since the average of two neighboring samples
of a constant signal is simply the value of the constant signal. Notice that the mag-
nitude response decreases as the frequency increases. Thus, higher frequency signals
have their amplitudes reduced more by the filter than lower frequency signals. Such
afilter is called alowpass filter because it passes lower frequencies better than higher
frequencies.

Often, we are given afrequency response, rather than some other description of an LTI system. The
frequency response, in fact, tells us everything we need to know about the system. The next example
begins the exploration of that idea.

7.2. FINDING AND USING THE FREQUENCY RESPONSE 189

Example 7.7. Suppose that the frequency response H of a discrete-time LTI system
Filter isgiven by
Vwe Reals, H(w) = cos(2w)

where w has units of radians/sample. Suppose that the input signal z: Ints — Realsis

such that for al n € Ints,
:):(n) _ [+1 neven
T 1=1 nodd

We can determine the output. All we have to do is notice that the input can be written
as
x(n) = cos(mn).

Thus, the input is cosine. Hence, the output is
y(n) = |H(m)| cos(mn + LH(w)) = cos(mn) = x(n).

Thisinput is passed unchanged by the system.
Suppose instead that the input is given by

x(n) = 5.
Once again, the input is a cosine, but this time with zero frequency,
x(n) = 5cos(0n).
Hence the output is
y(n) = [H(0)|cos(0n + /H(0)) = 5 = z(n).

Thisinput is also passed unchanged by the system.
Suppose instead that the input is

x(n) = cos(mn/2).
Thisinput is given explicitly as a cosine, making our task easier. The output is
y(n) = |H(n/2)| cos(mn/2+/H(r/2)) = cos(mn/2+7m) = — cos(mn/2) = —x(n).

Thisinput isinverted by the system.
Finally, suppose that the input is

x(n) = cos(mn/4).

Theoutput is
y(n) = |H(w/4)| cos(mn/4 + /H(w/4)) = 0.

Thisinput is removed by the system.

190 CHAPTER 7. FREQUENCY RESPONSE

7.2.1 TheFourier serieswith complex exponentials

The Fourier seriesfor acontinuous-time, periodic signal « : Reals — Realswith period p = 27/uy,
can be written as (see (6.4))

x(t) = Ag + Z Ay, cos(kwot + ¢).
k=1

For reasons that we can now understand, the Fourier series is usually written in terms of complex
exponentials rather than cosines. Since complex exponentials are eigenfunctions of LTI systems,
this form of the Fourier series decomposes a signal into components that when processed by the
system are only scaled.

Each term of the Fourier series expansion has the form
Ay, cos(kwot + dr)
which we can write (see box on page 184)
Ay, cos(kwot + ¢r) = Ak(ei(kw°t+¢’“) + e_i(kw0t+¢k))/2.

So the Fourier series can al'so be written

< A, A
z(t) = Ag + Z _k(el(kwot-l-(bk) + e—l(kwot-i-qﬁk))'
k=1 2

Observe that
gilkwot+ox) _ gikwot in
and let
Ag if k=0
Xp =14 0.5A44¢ if k>0 (7.9)

0.5A4_pe @+ ifk <0

Then the Fourier series becomes

2(t) = 3 Xpeihwol (7.10)

k=—o00

Thisis the form in which one usually sees the Fourier series. Notice that the Fourier series coeffi-
cients are conjugate symmetric,

Of course, since (7.10) is an infinite sum, we need to worry about convergence (see box on page
164).

The discrete-time Fourier series (DFS) can be similarly written. If z : Ints — Realsis aperiodic
signal with period p = 27 /wyp, then we can write

p—1)
z(n) = P Xpekewon (7.11)

7.3. DETERMINING THE FOURIER SERIES COEFFICIENTS 191

for suitably defined coefficients X;,. Relating the coefficients X}, to the coefficients A, and ¢y, isa
bit more difficult in the discrete-time case than in the continuous-time case (see box).

There are two differences between (7.10) and (7.11). First, the sum in the discrete-time case is
finite, making it manageable by computer. Second, it is exact for any periodic waveform. There are
no mathematically tricky cases, and no approximation needed.

7.2.2 Examples

The Fourier series coefficients A, of a square wave are shown in figure 6.6 in the previous chapter.

The magnitudes of the corresponding coefficients X;, for the Fourier series expansion of (7.10) are

shown in figure 7.8. Since each cosine is composed of two complex exponentials, there are twice as
many coefficients.

Notice the symmetry in the figure. There are frequency components shown at both positive and
negative frequencies. Notice also that the amplitude of the components is half that in figure6.6,
| Xk| = |Ax|/2. Thisisbecause there are now two components, one at negative frequencies and one
at positive frequencies, that contribute.

7.3 Determining the Fourier series coefficients

We have seen that determining the Fourier series coefficients by directly attempting to determine the
amplitude of individual frequency components can be difficult, even when the individual frequency
components are known. Usually, however, they are not known. A general formula for computing
the coefficients for a continuous-time periodic signal is given by

X = = [(t)e Imwotqt, (7.13)

O3

1
p

The validity of this equation is demonstrated in the box on page194.

The discrete-time case is somewhat simpler. A discrete-time periodic signal x with period p € Ints
has Fourier series coefficients given by

p=1 .
S a(m)eImhwo, (7.14)

m=0

This can be shown by manipulations similar to those in the box on page194. The practical impor-
tance in computing is much greater than that of the Fourier series for continuous-time signals. Since
this sum is finite, the DFS coefficients can be easily computed precisely on a computer.

192 CHAPTER 7. FREQUENCY RESPONSE

Probing further: Relating DFS coefficients

We have two discrete-time Fourier series expansions (see (7.11) and (6.7)),

p—1
x(n) = Z X eikwor (7.12)
k=0

K
z(n) = Ao+ Z A cos(kwon + ¢r), K=
k=1
Thereisareationship between the coefficients Ax, ¢ and X, but the relationship
is more complicated than in the continuous-time case, given by (7.9). To develop
that relationship, begin with the second of these expansions and write

(p—1)/2 ifpisodd
p/2 if piseven

K
A))
x(n) = Ay + kz::l Tk(el(kworﬂrd)k) 4 efz(kwoner)k)).

Note that since wy = 27 /p, then for all integers n, eworn — 1 g

e~ i(kwontor) _ p—i(kwonter) giwopn _ i(wo(p—k)n—or)
Thus,

L P K op, .
x(n) _ Ao—l—z—k€Z¢k€kaOn++Z—k€_z¢kezw0(p_k)n
k=1 2 k=1 2

-1
A, , <
p—m €*Z¢p—m ezwomn

K Ak; b ik p
= A TR 1 Jthwon+t
0+]; 5 e +

m=K 2 ’
by change of variables. Comparing this against (7.12),
Ag if k=0
N — Apetor /2 ifke{l,---,K—1}
M) Apei®n /2 + Apemi®)2 = Ajcos(gy,) ifk=K
Ap_re~ vk /2 ifke{K+1,---,p—1}

Thisrelationship is more complicated than (7.9). Fortunately, it is rare that we need
to use both forms of the DFS, so we can usually just pick one of the two forms and
work only with its set of coefficients.

7.3. DETERMINING THE FOURIER SERIES COEFFICIENTS 193

T T T T T T T T T K - 1 .
L K=3 -
1.0 K=7 --
K=32 -
0571 7]
0.0 7]
051 7]
-1.0L _
-0 1 2 3 4 5 6 7 8
Time in seconds x10°3 @)
0.6 7]
0571 7]
04 7]
0.3 7]
0.2 7]
01f ‘ ‘ .
00L ,LJJ,LJJ,LJ,LIJJJ, AEREN JJ,J,IJ,LLLJJ,LU |
-4 -3 -2 -1 0 1 2 3 4
Frequency in Hz x10° (b)

Figure 7.8: (a) One cycle of a square wave and some finite Fourier series
approximations. The number of Fourier series terms that are included in
the approximation is 2K + 1, so K is the magnitude of the largest index the
terms. (b) The magnitude of the complex Fourier series coefficients shown
as a function of frequency.

194 CHAPTER 7. FREQUENCY RESPONSE

Probing further: Formulafor Fourier series coefficients

To see that (7.13) is valid, try substituting for =(t) its Fourier series expansion,

o
Z X ikt

k=—o00

to get

1
Xm _ p/o Z Xkejkwot fjmwotdt

k=—00
Exchange the integral and summation (assuming thisisvalid, see box on pagel95)
to get

Z Xk/ elkwot g—jmwot gy

T p =

The exponentials can be combined to get

P .
K=o 30X, [ty
P, 0

In the summation, where k varies over al integers, there will be exactly one term
of the summation where k = m. In that term, the integral evaluates to p. For the
rest of the terms, k # m. Separating these two situations, we can write

1 ,
X=X + = Z X / ef (k=m)wot gy
P e o ktm

where the first term X,,, is the value of the term in the summation where k = m.
For each remaining term of the summation, the integral evaluates to zero, thus
establishing our result. To show that the integral evaluates to zero, let n = k — m,
and note that n = 0. Then

P P P
/ eIt gt = / cos(nwot)dt + j/ sin(nwot)dt
0 0 0

Since wy = 27 /p, these two integrals exactly span one or more complete cycles of
the cosine or sine, and hence integrate to zero.

7.4. FREQUENCY RESPONSE AND THE FOURIER SERIES 195

Probing further: Exchanging integrals and summations

The demonstration of the validity of the formula for the Fourier series coefficients
in the box on page 194 relies on being able to exchange an integral and an infi-
nite summation. The infinite summation can be given as a limit of a sequence of
functions

N
xn(t) = Z Xelhwot,
k=—N

Thus, we wish to exchange the integral and limit in

1
X’"ZE/O (Jim_ ()

A sufficient condition for being able to perform the exchange is that the limit con-
verges uniformly in the interval [0, p]. A sufficient condition for uniform conver-
genceisthat x is continuous and that its first derivative is piecewise continuous.

See R. G. Bartle, The Elements of Real Analysis, Second Edition, John Wiley &
Sons, 1976, p. 241.

7.3.1 Negative frequencies

The Fourier series expansion for a periodic signal z(t) is

o0
a(t)y= > X edkent

k=—0c0

This includes Fourier series coefficients for the constant term (when & = 0, ¢*<0! = 1), plus the
fundamental and harmonics (k > 1). But it also includes terms that seem to correspond to negative
frequencies. When k& < —1, the frequency kwy is negative. These negative frequencies balance the
positive ones so that the resulting sum is real-valued.

7.4 Frequency response and thefourier series

Recall that if the input to an LTI system S is a complex exponential signal = € [Reals — Comps|
where A
Vt € Reals, x(t) =™ = cos(wot) + isin(wot).

then the output for all ¢ is ‘
y(t) = H(WO)ezwmv

where the complex number H (wp) isis the frequency response of the system at frequency wy. It
is equal to the output at time zero y(0) when the input is ¢«°t. H itself isafunction H: Reals —

196 CHAPTER 7. FREQUENCY RESPONSE

Comps that in principle can be evaluated for any frequency w € Reals, including negative frequen-
cies.

Recall further that if an input z(t) to the system S is a periodic signal with period p, then it can be
represented as a Fourier series,

o0
a(t)y= > X edhent

k=—o00

By linearity and time invariance of S, the output .S(z) for this periodic input x, is

y(t) = S H(kwo)Xyeikeot

k=—o00

Linearity tells us that if the input is decomposed into a sum of components, then the output can
be decomposed into a sum of components where each component is the response of the system to
a single input component. Linearity together with time invariance tells us that each component,
which isacomplex exponential, is simply scaled. Thus, the output is given by a Fourier series with
coefficients Xy H (kwy).

This major result tells us:

e There are no frequency components in the output that were not in the input. The output
consists of the same frequency components astheinput, but with each component individually
scaled.

e LTI systems can be used to enhance or suppress certain frequency components. Such opera
tions are called filtering.

e Thefrequency response function characterizes which frequencies are enhanced or suppressed,
and also what phase shifts might be imposed on individual components by the system.

7.5 Frequency response of composite systems

In section 2.1.5 we studied several ways of composing systems (using the block diagram syntax) to
obtain more complex, composite systems. We will seein this section that when each block isan LTI
system, the resulting composite system is also LTI. Moreover, we can easily obtain the frequency
response of the composite system from the frequency response of each block. This provides a very
important tool for the analysis and synthesis of composite LTI systems. This tool works equally
well with discrete and continuous systems.

7.5.1 Cascade connection

Consider the composite system .S obtained by the cascade connection of systems .§ and S5 in
figure 7.9. Suppose S; and Sy are LTI. We first show that S = S; o S isLTI. To show that S is

7.5. FREQUENCY RESPONSE OF COMPOSITE SYSTEMS 197

X y z

—>» S —>» S >
Sw)

Figure 7.9: The cascade connection of the two LTI systems is the system
S = Sy05. The frequency response is related by Vw, H (w) = H;(w)Ha(w).

time-invariant, we must show that for any 7, S o Dy4,, = D 0 S. But,

SoD; = Sy0810D;

= Sy0D, 081, sinceS; istime-invariant

= D, o0 S5051, since S, istime-invariant

= D;oS,
asrequired.
We now show that S islinear. Let be any input signal and a any complex number. Then

S(axr) = Syo0Si(ax)
= SQ(CLSl(x)), since81 islinear

= aG(Si(x)), since Sy islinear
= aS(z).
Lastly, if and y are two input signals, then
S(x+y) = Sro08i(z+y)
Sa(S1(x) + S1(y)), since Sy islinear
S2(S1(z)) + S2(S1(y)), since Sy islinear
= S(z)+ S(y).

This showsthat S islinear.

We now compute the frequency response of S. Let H (w), Ha(w), H (w) be the frequency response
of these systems at the frequency w. Consider the complex exponentia input z:

Vt € Reals, x(t) = et

Then the signal y = S;(z) isamultiple of z, namely, y = H;(w)x. In particular, y is a complex
exponentia input, and so z = S;(y) is given by

z = Ho(w)y = Ha(w) x Hy(w)x.

But since H (w) isthe frequency response of S at the frequency w, we aso have

198 CHAPTER 7. FREQUENCY RESPONSE

Figure 7.10: The feedback connection of the two LTI systems Sy, Sy is S.
The frequency response is related by Vw, H (w) = Hy(w)/[1 — Hi(w)Ha(w)].

and so we obtain

Ww € Reals, H(w) = Hy(w)Hy(w).] (7.15)

Exactly the same formula applies in the discrete-time case. This is a remarkable result. First,
suppose that the cascade connection of figure7.9 wasreversed, i.e. consider the systemS' = 51055.
Then the frequency response of S is

H(w) = Hi(w) X Hy(w) = Hy(w) X H(w) = Hw).

That is, S and S have the same frequency response! Thisimplies, in fact, that S and .S are equiv-
alent: they give the same output for the same input. So in any cascade connection of LTI systems,
the order in which the systems are composed does not matter.

7.5.2 Feedback connection

The feedback arrangement shown in figure 7.10 is fundamental to the design of control systems.
The overall system S is called the closed-loop system. We first show that S is LTI if S and S,

are LTI, and we then calculate its frequency response. Suppose z is the input signal, and define the
signals u, z and y as shown. The circle with the plus sign represents the relationship u = = + z.
The signals are then related by,

(u)

= Si(z+2)

= Sl(x)—i—Sl() since S islinear
= Si(@) + Si(Sa).

y = 51

Note that this equation relates the input and output, but the output appears on both sides. We can
rewrite this as

y — S1(S2(y)) = Si(z). (7.16)

7.5. FREQUENCY RESPONSE OF COMPOSITE SYSTEMS 199

Thus, given the input signal z, the output signal y is obtained by solving this equation. We will
assume that for any signal x (7.16) has aunique solution y. Then, of course, y = S(x). We can use
methods similar to the ones we used for the cascade example to show that S iSLTI (see box).

We now compute the frequency response H (w) of S at frequency w. Let the frequency response of
S1 be Hq, and of Sy be Hs. Suppose the input signal is the complex exponential

Vt € Reals, xz(t) = "

For this input, we know that S;(z) = H;(w)x and S2(x) = Ha(w)z. Since S isLTI, we know that
the output signal y is given by

Il
N

y=H(w)z.
Using thisrelation for y in (7.16) we get
H(w)r — S1(S2(H(w)x)) = H(w)[z— 51(S2(x))], since Sy, S arelinear
= H(w)[z — Hi(w)Hy(w)z]
= H(W)[1 - Hi(w)Ha(w)]x
)

1(z
= Hi(w)z, by (7.16),

from which we get the frequency response of the feedback system,

Hi(w
H(@) = = 55w (7.19)

Thisrelation is at the foundation of linear feedback control design.

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some thought,
requires some conceptualization. Problems labeled E are usually mechanical, those labeled T re-
quire aplan of attack, those labeled C usually have more than one defensible answer.

1. EFind A € Comps so that
V't € Reals, Ae™'+ A*e™ ™! = cos(wt + 7/4),
where A* is the complex conjugate of A.
2. E Plot the function s: Reals — Reals given by
Ve Reals, s(z) = Im{e(-o+i2m2)},
You are free to choose a reasonable interval for your plot, but be sureit includes x = 0.

3. E Analogoudly to D; in(7.1) and Dy in example 7.2, define formally the following variants:

200 CHAPTER 7. FREQUENCY RESPONSE

Probing further: Feedback systemsareLTI

To show S in figure 7.10 is time-invariant we must show that for any 7,

S(DT('T)) = DT(S(‘T)) = DT(?/): (7.17)

that is, we must show that D (y) isthe output of .S when theinput is D, (z). Now
the left-hand side of (7.16) with y replaced by D, (y) is

D-(y) = S1(52(D7(y))) = Dr(y) — D-(51(S2(y)),
since S; and S, are time-invariant
= D.(y—S1(52(y))), since D islinear,
= D;(51(z)), by (7.16)
= S1(D;(x)), since S; istime-invariant
so that D (y) isindeed the solution of (7.16) when the input is D~ (x). This proves
(7.17).

Linearity is shown in a similar manner. Let a be any complex number. To show
that ay is the output when the input is ax we evaluate the left-hand side of (7.16)
at ay,

ay — S1(S2(ay)) = ay —aS1(S2(y)), since Sy and S, are linear

= aly — S1(Sa2(y))]
= aSi(z), by (7.16)
= Si(azx), since Sy islinear

which showsthat S(ax) = aS(x).
Next suppose w isanother input and z = S(w) the corresponding output, i.e.

z — 51(52(2)) = S1(w). (7.18)
We evaluate the left-hand side of (7.16) at y + =z,

(y+2) = Si1(S20y+2) = [y—51(S2y)] + [z — S1(52(2)],
since Sy and S arelinear
= Si(z) + Si(w), by (7.16) and (7.18)
= Si(xr 4+ w), since S islinear

andso S(z+w) =y+ 2z =85(x)+ 5(z).

7.5. FREQUENCY RESPONSE OF COMPOSITE SYSTEMS 201

(@ A shift operator S, 5, that shifts an image v units vertically and A units horizontally,
wherev € Realsand h € Reals.

(b) A shift operator S, ,, that shifts adiscrete image m units vertically and n. units horizon-
tally, wherem € Intsand n € Ints.

4. E Consider a discrete-time system D: [Ints — Reals| — [Ints — Reals], where if y = D(x)
then
Vnelnts, y(n)=zn-1).
(@) Is D linear? Justify your answer.
(b) Is D time-invariant? Justify your answer.
5. E Consider acontinuous-time system TimeScale: [Reals — Reals] — [Reals — Reals|, where
if y = TimeScale(x) then
VteReals, y(t)=x(2t).
() IsTimeScale linear? Justify your answer.
(b) Is TimeScale time-invariant? Justify your answer.

6. E Suppose that the frequency response of a discrete-time LTI system S is given by
H(w) = [sin(w)|
where w has units of radians/sample. Suppose the input is the discrete-time signal = given by
Vn € lInts, xz(n) = 1. Giveasimple expression for y = S(x).

7. T Find the smallest positive integer n such that

n

3 kT /6 _ ()

k=0

Hint: Note that the term being summed is a periodic function of k. What isits period? What
is the sum of a complex exponential over one period?

8. T Consider a continuous-time periodic signal = with fundamental frequency w = 1 ra
dian/second. Suppose that the Fourier series coefficients (see €.4)) are

A — 1 k=0,1, or2
710 otherwise

and for all k£ € Natsy, ¢ = 0.

(8) Find the Fourier series coefficients Xj, for al k € Ints (see (7.10)).

(b) Consider a continuous-time LTI system Filter: [Reals — Reals] — [Reals — Reals],
with frequency response
H(w) = cos(mw/2).

Find y = Filter(x). |.e, give asimple expression for y(t) that isvalid for al ¢t € Reals.

202

0.

10.

11.

CHAPTER 7. FREQUENCY RESPONSE

(c) For y calculated in (b), find the fundamental frequency in radians per second. |.e., find
the largest wy, > 0 such that

VteReas, y(t)=uy(t+2r/w)

T Consider a continuous-time LTI system S. Suppose that when the input « is given by

if0 <
Vt € Reals, z(t) = { (1)’ gtr?er_w€sz 1

then the output y = S(x) isgiven by

1, ifo<t<?2
Vt € Reals, y(t) = { 0. otherwise
Give an expression and a sketch for the output of the same system if the input is

1, ifo<t<i1
Vt € Reals, 2'(t)=¢ —1, if1<t<?2
0, otherwise

T Suppose that the frequency response H of adiscrete-time LTI system Filter is given by:
Vwe [-mn], H(w)=|wl.

where w has units of radians/sample. Note that since a discrete-time frequency response is
periodic with period 27, this definition implicitly gives H (w) for all w € Reals. Give simple
expressions for the output y when the input signal = : Ints — Realsissuch that V n € Ints
each of the following istrue:

c
(b) z(n) =5.

© =(n) —{ “1. nodd

T Consider acontinuous-time LTI system S. Suppose that when the input is given by

_ [sin(nt) 0<t<1
z(t) = { 0 otherwise

then the output y = S(x) isgiven by

sin(mt) 0<t<1
y(t) = { sin(m(t—1)) 1<t<2
0 otherwise

for al ¢ € Reals.

(a) Carefully sketch these two signals.

7.5. FREQUENCY RESPONSE OF COMPOSITE SYSTEMS 203

(b) Givean expression and a sketch for the output of the same system if the input is

sin(mt) 0<t<1
x(t) = { —sin(r(t—1)) 1<t<?2
0 otherwise

12. T Suppose you are given the building blocks shown below for building block diagrams:

N gy R B

These blocks are defined as follows:

e An LTI system Hyy: [Reals — Reals] — [Reals — Reals| that has a rectangular fre-
guency response given by

1 W<w<W

VweReals, H(w)= {O otherwise

where IV is a parameter you can set.
e A gainblock Gy: [Reals — Reals] — [Reals — Reals| whereif y = g(z), then
Vte Reals, y(t)=gx(t)

where g € Realsis aparameter you can set.

e An adder, which can add two continuous-time signals. Specifically, Add: [Reals —
Reals| x [Reals — Reals] — [Reals — Reals| such that if y = Add(z;, z2) then

VteReals, y(t)=x1(t)+ z2(t).

Use these building blocks to construct a system with the frequency response shown below:

A H()

T

w
2 10 1 2
13. T Let u be adiscrete-time signal given by
1 0<n
Vnelnts, wu(n)= {O otherwise

This is the unit step signal, which we saw before in (2.15). Suppose that a discrete-time
system H that isknown to be LTI is such that if the input is u, the output isy = H (u) given
by

Vnelnts, y(n)=nu(n).

204

14.

15.

16.

CHAPTER 7. FREQUENCY RESPONSE

Thisis called the step response of the system. Find a simple expression for the output w =
H (p) when the input is p given by

2 0<n<8

Vnelnts, p(n)= {0 otherwise

Sketch w.

T Suppose you are given the Fourier series coefficients - - - X 1, X, X1, Xo, - - - for aperiodic
signal z: Reals — Realswith period p. Find the fundamental frequency and the Fourier series
coefficients of the following signals in terms of those of .

(8 ysuchthatVt € Reals, y(t) = z(at), for some positive real number a.

(b) wsuchthat V¢ € Reals, w(t) = x(t)e“°!, where wy = 27 /p.

(¢) zsuchthat V¢ € Reals, z(t) = x(t) cos(wpt), wherewy = 27 /p.

Analogously to the box on page 194, show that the formula (7.14) for the discrete Fourier
series coefficients is valid.

C Consider asystem Squarer : [Reals — Reals] — [Reals — Reals|, whereif y = Sguarer (x)
then
VtcReals, y(t)=a2(t).
() Show that this system is memoryless.
(b) Show that this system is not linear.
(c) Show that this system is timeinvariant.
(d) Suppose that theinput x is given by

Vte Reals, z(t)=cos(wt),

for some fixed w. Show that the output y contains a component at frequency 2w.

Chapter 8

Filtering

Linear time invariant systems have the property that if the input is described as a sum of sinusoids,
then the output is a sum of sinusoids of the same frequency. Each sinusoidal component will typ-
icaly be scaled differently, and each will be subjected to a phase change, but the output will not
contain any sinusoidal components that are not also present in the input. For this reason, an LTI
system is often called afilter. It can filter out frequency components of the input, and also enhance
other components, but it cannot introduce components that are not already present in the input. It
merely changes the relative amplitudes and phases of the frequency components that are present in
the inputs.

LTI systemsarisein two circumstances in an engineering context. First, they may be used asamodel
of aphysical system. Many physical systems are accurately modeled as LTI systems. Second, they
may present an ideal for an engineered system. For example, they may specify the behavior that an
electronic system is expected to exhibit.

Consider for example an audio system. The human ear hears frequencies in the range of about 30 to
20,000 Hz, so a specification for a high fidelity audio system typicaly requires that the frequency
response be constant (in magnitude) over this range. The human ear is relatively insensitive to
phase, so the same specification may say nothing about the phase response (the argument, or angle
of the frequency response). An audio system is free to filter out frequencies outside this range.

Consider an acoustic environment, aphysical context such as alecture hall where sounds are heard.
The hall itself aters the sound. The sound heard by your ear is not identical to the sound cre-
ated by the lecturer. The room introduces echoes, caused by reflections of the sound by the walls.
These echoes tend to occur more for the lower frequency components in the sound than the higher
frequency components because the walls and objects in the room tend to absorb higher frequency
sounds better. Thus, the lower frequency sounds bounce around in the room, reinforcing each other,
while the higher frequency sounds, which are more quickly absorbed, become relatively less pro-
nounced. In an extreme circumstance, in a room where the walls a lined with shag carpeting, for
example, the higher frequency sounds are absorbed so effectively that the sound gets muffled by the
room.

The room can be modeled by an LTI system where the frequency response H(w) is smaller in

205

206 CHAPTERS8. FILTERING

magnitude for large w than for small w. Thisisasimpleform of distortion introduced by achannel
(the room), which in this case carries a sound from its transmitter (the lecturer) to its receiver (the
listener). This form of distortion is called linear distortion, a shorthand for linear, time-invariant
distortion (the time invariance is left implicit).

A public address system in alecture hall may compensate for the acoustics of the room by boosting
the high frequency content in the sound. Such a compensator is called an equalizer because it
corrects for distortion in the channel so that all frequencies are received equally well by the receiver.

In a communications system, a channel may be a physical medium, such as a pair of wires, that
carries an electrical signal. That physical medium distorts the signal, and this distortion is often rea-
sonably well approximated as linear and time invariant. An equalizer in the receiver compensates
for this distortion. Unlike the audio example, however, such an equalizer often needs to compen-
sate for the phase response, not just the magnitude response. Because the human ear is relatively
insensitive to phase distortion, a public address system equalizer need not compensate for phase
distortion. But the wire pair may be carrying a signal that is not an audio signal. It may be, for
example, amodem signal.

Images may also be processed by LTI systems. Consider the three images shown in figure8.1. The
top image is the original, undistorted image. The lower left image is blurred, as might result for
example from unfocused optics. The lower right image is, in a sense, the opposite of the blurred
image. Whereas the blurred image deemphasizes the patterns in the ouitfit, for example, the right
image deemphasizes the regions of constant value, changing them all to a neutral gray.

For images, time is not the critical variable. Itsrole is replaced by two spatia variables, one in the
horizontal direction and one in the vertical direction. Thus, instead of LTI, we might talk about
an image processing system being a linear, space-invariant (LSI) system. The blurred image is
constructed from the original by an LS| system that eliminates high (spatial) frequencies, passing
unaltered the low frequencies. Such a system is called alowpass filter. The lower right image is
constructed from the original by an LSl system that eliminates low frequencies, passing unaltered
the high frequencies. Such a system is called a highpass system. Both images were created using
Adobe Photoshop, although the blurred image could have been just as easily created by a defocused
lens.

8.1 Convolution

The frequency response of a system is a declarative description of the system. It tellsuswhat it is,
not how it works. It tells us, for example, that it is alowpass filter, but it does not tell us whether it is
adefocused lens or a computer program, much less telling us how the computer program works. In
this chapter, we explore imperative descriptions of systems, and build up to detailed descriptions of
software that can implement certain kinds of LTI (or LSl) systems. These imperative descriptions
are based on convolution.

81. CONVOLUTION 207

= =

(.__::.., - =
'"'"-.’:‘?F-...o--"g_ - "__,.1"'

3 : . ___..J'
— et -
<= % S
AT.h., {‘:

Figure 8.1: An image and two versions that have been distorted by a linear,
space-invariant system.

208 CHAPTERS8. FILTERING

8.1.1 Convolution sum and integral

For discrete-time signals the convolution operator is called the convolution sum, and for continuous-
time signalsit is called the convolution integral. We define these two operators now and note some
important properties.

Let x,y € [Ints — Reals] be two discrete-time signals. The convolution sum of = and y is the
discrete-time signal, denoted x * y, given by

Vnelnts, (zxy)(n)= S x(k)yln —k). 8.1

k=—o00

We note two properties. First, the order in the convolution sum does not matter, x x y = y * x.
Indeed, if in (8.1) we change the variables in the summation, letting m = n — k, we get

Vn €lnts, (xx*y)(n) = i z(k)y(n — k)
k=—o00
= Z x(n —m)y(m).
Thus,
(@ y)(n) = (y+ z)(n).] (8.2)

This property is called commutativity of the convolution operator?

Another property of convolution islinearity. That is, if x, v, yo are three signals and a; and a; are
real numbers, then

(8.3)

‘x * (a1y1 + agy2) = a1(z * y1) + az(x * yo),

which may be checked directly by applying definition §.1) to both sides.

We now use the convolution sum to define some LTI systems. Fix a discrete-time signal h, and
define the system

S:[Ints — Reals| — [Ints — Reals|

by
Ve lnts— Reals], S(z)=hxuz.

Thus the output signal y = S(z) corresponding to the input signal z is given by

Vnelnts, y(n)= i h(k)x(n — k).

k=—00

*Matrix multiplication is an example of an operator that is not commutative, while matrix addition is. Since the sum
of two matrices M and N (of the same size) does not depend on the order, i.e, M + N = N + M, the matrix sum
is a commutative operator. However, the product of two matrices depends on the order, i.e, it is not always true that
M x N = N x M, so the matrix product is not commutative.

81. CONVOLUTION 209

Figure 8.2: Signal in example 8.1.

We now show that S is LTI. The linearity of S follows immediately from the linearity property of
the convolution. To show time-invariance, we must show that for any integer 7, and any input signal
x,

D, (h+x) = h* (D)),
where D, isadelay by 7. But thisis easy to see, since for al n,
(Dr(h*z))(n) = (hxz)(n—7)
= i h(k)x(n — 1 — k), by definition (8.1)

k=—00

= i h(k)z(n — k), where z = D, ()

k=—00

= (hx*2)(n).

Thus every discrete-time signal h defines an LTI system via convolution. In the next section we will
see the converse result, that every LTI system is defined by convolution with some signal 5.

Example 8.1: Consider adiscrete-time signa h defined by

v € Ints, 0 otherwise

hn) = { 1/3 ifne{0,1,2}

Thisis shown in figure 8.2. Let us define a system S asfollows. If theinput is z, then
the output is
y=S(x)=hxuz.

l.e

Vnelnts, y(n) = Z h(k)x(n — k)

k
= (z(n)+z(n—1)+z(n—2))/3. (8.4)

This system cal cul ates the three-point moving average!

210 CHAPTERS8. FILTERING

We now turn to the continuous time case. Let z,y € [Reals — Reals| be two continuous-time
signals. The convolution integral of 2 and y is the continuous-time signal, denoted z * y, given by

VicReals (z+y)(t) = _?O 2(r)y(t — 7)dr. (8.5)

By a change of variable in the integral we can check that the convolution integral is commutative,
i.e.,

[VteReals (zxy)(t) = (y*2)(),

(8.6)

anditislinear; i.e. if x, 1, yo are three continuous-time signals and a;, as are real numbers, then

‘J;*(alyl—i—agyg) =ay(z*yp) —|—a2(x>x<y2).‘ (8.7)

Againfix h € [Reals — Reals|, and define the system
S:[Reals — Reals] — [Reals — Reals]

by
Vo € [Reals — Reals], S(z)=h=x*uw.

Then in exactly the same way as for the discrete-time case, we can show that S isLTI.

Example 8.2: Consider acontinuous-time signa h defined by

) 1/3 ifte]0,3]
VteReals, ~ht)= { 0 otherwise
Thisis shown in figure 8.3. Let us define a system S asfollows. If theinput is z, then
the output is

y=S(x)=hx*x.

l.e
VicReals y(t) — / h(r)a(t — 7)dr
1003
= go/x(t — 7)dT. (8.8)

This system is the length-three continuous-time moving average!

Note that we are using the same symbol ‘*’ for the convolution sum and the convolution integral.
The context will determine which operator isintended.

81. CONVOLUTION 211

h(t
A()

13 — t
3 >

Figure 8.3: Signal in example 8.2.

3(n)

Figure 8.4: The Kronecker delta function, a discrete-time impulse.

8.1.2 Impulses

Intuitively, an impulse is asignal that is zero everywhere except at time zero. In the discrete-time
case, the Kronecker delta function,

0:Ints — Reals
is defined by

_J 1 ifn=0

Vnelnts, dn)= { 0 otherwise

(8.9)

Its graph is shown in figure 8.4.
The continuous-time case, which is called the Dirac delta function, is mathematically much more
difficult to work with. Like the Kronecker delta function, it is zero everywhere except at zero.
But unlike the Kronecker delta function, its value is infinite at zero. We will not concentrate on
its subtleties, but rather just introduce it and assert some results without fully demonstrating their
validity. The Dirac delta function is defined to be

0:Reals — Reals;
where Reals; ;. = RealsU {oo, —c0}, and

V't e Realswheret #0, d(t) =0

and where the following property is satisfied for any € > 0 in Reals, 4,

j S(t)dt =1

212 CHAPTERS8. FILTERING

Figure 8.5: The Dirac delta function, a continuous-time impulse.

For the latter property to be satisfied, clearly no finite value at ¢ = 0 would suffice. Thisiswhy the
value must beinfinite at t = 0. Notice that the Kronecker delta function has a similar property,

Z o(n)=1

for any integer a > 0, but that in this case, the property istrivial. There is no mathematical subtlety.

The Dirac delta function is usually depicted as in figure8.5. In any figure, of course, the infinite
value at t = 0 cannot be shown directly. The figure suggests that infinite value with avertical arrow.
Next to the arrow is the weight of the delta function, ‘1’ in this case. In general, a Dirac delta
function can be multiplied by any real constant a. Of course, this does not change itsvalue at ¢ = 0,
which is infinite, nor does it change its value at ¢t # 0, which is zero. What it does change is its
integral,

€

/aé(t)dt =a.

—€

Thus, athough the impulse is still infinitely narrow and infinitely high, the area under the impulse
has been scaled by a.

8.1.3 Signalsassums of weighted delta functions

Any discrete-time signal «: Ints — Reals can be expressed as a sum of weighted Kronecker delta
functions,

vaelnts, z(n)= > a(k)8(n— k). (8.10)

k=—o00

The kthterminthesumisz(k)d(n—k). Thisterm, by itself, definesasignal that is zero everywhere
except at n = k, where it has value (k). Thissignal is caled aweighted delta function because
it is a (time shifted) delta function with a specified weight. Thus, any discrete-time signal is a sum
of weighted delta functions, much the way that the Fourier series describes a signal as a sum of
weighted complex exponential functions.

Example 8.3: Thesigna h in example 8.1 can be written in terms of Kronecker delta
functions,
Vnelnts, h(n)=((n)+dn—1)+dn—2))/3.

81. CONVOLUTION 213

08(n+1)

(1/3)8(n)

(3(n) + &(n — 1) + 8(n - 2))/3

(1/3)3(n - 1)

(1/3)3(n - 2)

Figure 8.6: A discrete-time signal is a sum of weighted delta functions.

214 CHAPTERS8. FILTERING

This has the form of (8.10), and is illustrated in figure 8.6. It is described as a sum of
signals where each signal contains only a single weighted impulse.

Equation (8.10) is sometimes called the sifting property of the Kronecker delta function because it
“sifts out” the value of afunction x at some integer n. That is, the infinite sum reduces to a single
number. This property can often be used to eliminate infinite summations in more complicated
expressions.

The continuous-time version of thisis similar, except that the sum becomes an integral (integration,
after all, isjust sum over a continuum). Given any signa x: Reals — Reals,

VteReals, a(t)= / 2(r)8(t — 7)dr. (8.11)

— 00

Although this is mathematically much more subtle than the discrete-time case, it is very similar in
structure. It describes a signal = as a sum (or more precisely, an integral) of weighted Dirac delta
functions.

Example 8.4: Thesignal h in figure 8.3 and example 8.2 can be written asa sum (an
integral, actually) of weighted Dirac delta functions,

VtcReals, h(t) — [= (st — T)dr

3
— / (1/3)6(t — 7)dr.
0
This has the form of (8.11).

Equation (8.11) is sometimes called the sifting property of the Dirac delta function, because it
sifts out from the function x the value at a given time ¢. The sifting property can often be used to
eliminate integrals, since it replaces an integral with asingle value.

8.1.4 Impulseresponse and convolution

Consider a discrete-time LTI system S: [Ints — Reals] — [Ints — Reals]. Define itsimpulse re-
sponse A to be the output signal when the input signal is the Kronecker delta function (an impulse),
h = S(0), that is,
Vn, h(n) = (5(8))(n).

Now let = be any input signal, and let y = S(x) be the corresponding output signal. In 8.10), z is
given as sum of components, where each component is a weighted delta function. Since S is LTI,
the output can be given as a sum of the responses to these components. Each component is asignal
x(k)o(n — k) for fixed k, and the response to thissignal is z(k)h(n — k). The response to a scaled
and delayed impulse will the a scaled and delayed impulse response. Thus, the overall output is

o0

y) = 5 a(k)hin — k) = (@ h)n) = (h*z)(n).

k=—00

81. CONVOLUTION 215

Thus, the output of any discrete-time LTI system is given by the convolution of the input signal and
the impul se response.

Example 8.5: The three-point moving average system .S of example8.1 has impulse
response

Vnelnts, h(n)=((n)+dn—1)+dn—2))/3.
This can be determined from (8.4) by just letting the input be x = §. The impulse

response, after al, is defined to be the output when the input isan impulse. Theimpulse
response is shown in figure 8.2.

Consider now a continuous-time LTI system S: [Reals — Reals] — [Reals — Reals|. Define
its impulse response to be the output signal A when the input signa is the Dirac delta function,
h=5(9),i.e,

Vt € Reals, h(t) = S(0)(t).
Now let = be any input signal and let y = S(x), be the corresponding output signal. By the sifting
property we can express = as the sum (integral) of weighted delta functions,

2(t) = / T 2()8(t — r)dr

—0o0

Since S is LTI, the output is a sum (integral) of the responses to each of the components (the
integrand for fixed 7), or

y(t) = Z z(T)h(t — 7)dT = (z x h)(t) = (h *x)(t). (8.12)

Thus,

The output of any continuous-time LTI system is given by the convolution of the
input signal and the impulse response.

Example 8.6: The length-three continuous-time moving average system S of 8.2 has
impulse response

) 1/3 ifte]0,3]
VteReals, ~ht)= { 0 otherwise
This can be determined from (8.8) by just letting the input be = = § and then using the
sifting property of the delta function. The impulse response, after all, is defined to be
the output when the input is an impulse. The impulse response is shown in figure8.3.
In general, amoving average has an impul se response with this rectangular shape.

216 CHAPTERS8. FILTERING

Figure 8.7: A cascade combination of two discrete-time LTI systems.

Example 8.7. Consider an N-step discrete-time delay system, as in example 7.2,
where the output y is given in terms of the input = by the difference equation

Vnelnts, y(n)=ax(n—N). (8.13)
The impulse response can be found by letting « = 4, to get
h(n) =0(n — N).

The output can be given as a convolution of the input and the impulse response,

(e 9]

y(n)=) @(k)d(n— N —k) =z(n - N),

k=—00

using the sifting property. Of course, this agrees with §.13).

Example 8.8: Consider an T" second continuous-time delay system, where the output
y isgivenin terms of the input = by the equation

VteReas y(t)=xz(t-1T). (8.14)
The impulse response can be found by letting = = 4, to get
h(t)=6(t—T).

The output can be given as a convolution of the input and the impulse response,

[e.o]

y(t) = / 2(1)S(t = T — 7)dr = a(t — T),

—00

using the sifting property. Of course, this agrees with §.14).

Example 8.9: Suppose that we have two LTI systems (discrete or continuous time)
with impul se responses h; and k9, and we connect them in a cascade structure as shown
in figure 8.7. We can find the impulse response of the cascade composition by letting
the input be an impulse, z = §. Then the output of the first system will be its impulse

8.2 FREQUENCY RESPONSE AND IMPUL SE RESPONSE 217

response, w = hy. This provides the input to the second system, so its output will be
y = hi x ha. Thus, the overall impulse response is the convolution of the two impulse

responses,
h = hy * ho.

We aso know from the previous chapter that the frequency responses relate in a very
simple way, namely
H(w) = Hy(w)Hs(w).

We will find that, in general, convolution in the time domain is equivalent to multipli-
cation in the frequency domain.

8.2 Frequency response and impulse response

If adiscrete-time LTI system has impul se response h, then the output signal y corresponding to the
input signal x is given by the convolution sum,

Vn, y(n)= Z h(m)x(n —m).
In particular, suppose the input is the complex exponential function

iwn

Vn € Ints, x(n) =",

for somerea w. Then the output signal is

y(n) _ Z h(m)eiw(nfm) — elwn Z h(m)efiwm'

Recall further that when the input is a complex exponential with frequency w, then the output is
given by
y(n) = H(w)e™"

where H (w) is the frequency response. Comparing these two expressions for the output we see that
the frequency response is related to the impulse response by

Vo e Reals, H(w)= 3 h(m)em. (8.15)

m=—00

This expression alows us, in principle, to calculate the frequency response from the impulse re-
sponse. Equation (8.15) gives us away to transform h, atime-domain function, into 4, afrequency
domain function. Equation (8.15) is called a discrete-time Fourier transform (DTFT). Equivae-
lently, we say that H isthe DTFT of h. So the frequency response of a discrete-time system is the
DTFT of its impulse response.

218 CHAPTERS8. FILTERING

Example 8.10: Consider the N-step delay from example8.7. Itsimpulse response is
h(n) =0(n — N).
We can find the frequency response by calculating the DTFT,

H(w) = Z h(m)e ™™

= Z §(m — N)e~m

m=—0Q

_ efsz

where the last step follows from the sifting property. This same result was obtained
more directly in example 7.2. Note that the magnitude response is particularly simple,

H(w)| = 1.

This is intuitive. An N-step delay does not change the magnitude of any complex
exponentia input. It only shifts its phase.

Notice from (8.15) that

[1f hisreal-valued then /*(—w) = H(w)] (8.16)

(just conjugate both sides of (8.15) and evaluate at —w). This property is called conjugate symme-
try. Itimplies

[H(-w)| = [H(w)]. (8.17)
This says that for any LTI system with areal-valued impulse response, a complex exponential with
frequency w experiences the same amplitude change as a complex exponential with frequency —w.

Notice further from (8.15) that

[VweRels H(w+2r) =Hw).| (8.18)

l.e., the DTFT is periodic with period 2. This says that a complex exponential with frequency w
experiences the same amplitude and phase change as a complex exponentia with frequency w + 2.
This should not be surprising since the two complex exponentials are in fact identical,

€z(w—i—?w)n — ezwn€z27rn — ezwn’

because '™ = 1 for any integer n.

The continuous-time version proceeds in the same way. Let S be a continuous-time system with
impulse response h. Then the output signal i corresponding to an input signal z is given by
o0

V't € Reals, y(t):/ 2t — T)h(r)dr.

—00

8.2. FREQUENCY RESPONSE AND IMPUL SE RESPONSE 219
In particular, if the input signal is the complex exponential,

Vtc Reals, x(t) = et
then the output signal is

y(t) = / Giw(t_T)h(T)dT = ei“’t/ e_iTh(T)dT.

The output is also given by y(t) = H(w)ée“t where H(w) is the frequency response, and so we
have

H(w) = [h(t)e-tdt, (8.19)

So, given its impulse response, we can calculate the frequency response of a continuous-time LTI
system by evaluating the integral (8.19). Like the DTFT, this integral transforms a time-domain
signa h into a frequency-domain signal H. It is called the continuous-time Fourier transform
(CTFT), or more commonly, simply the Fourier transform (FT). Thus the frequency response H
of acontinuous-time LTI system isjust the CTFT of itsimpulse response h.

Example 8.11: Consider the T' second delay from example8.8. Its impulse response
is
h(t)=0(t —1T).

We can find the frequency response by calculating the CTFT,
H(w) = /h@fwﬁ

= / S(t — T)e “tdt

— e—sz

where the last step follows from the sifting property. Note that the magnitude response
is particularly simple,
[H(w)| = 1.

This is intuitive. A T second delay does not change the magnitude of any complex
exponentia input. It only shifts its phase.

Notice from (8.19) that the CTFT is also conjugate symmetric if h isreal,
H*(—w) = H(w) (8.20)

|H(~w)| = |HW)| (8.21)

220 CHAPTERS8. FILTERING

8.3 Causality

A system is causal if the output value at a particular time depends only on the input values at that
time or before. For LTI systems, if we examine the convolution sum,

y(n) = i h(m)x(n —m),

m=—0Q

for acausal system it must be true that 2(m) = 0 for al m < 0. Were this not true, there would be
non-zero termsin the sum with m < 0, and those terms would involve a future sample of the input,
x(n —m). Conversely, if h(m) = 0 for al m < 0, then the system is causal since the sum for y(n)
will involve only previous input values, z(n),z(n — 1), z(n — 2), - - -.

Causality is an important practical property of a system that receivesitsdatain real time (physical
time). Such systems cannot possibly look ahead in time, at least not until someone invents atime
machine. However, there are many situations where causality isirrelevant. A system that processes
stored data, such as digital audio off a compact disk or audio files in a computer, has no difficulty
looking ahead in “time.”

8.4 Finiteimpulseresponse (FIR) filters

Consider an LTI system S: [Ints — Reals| — [Ints — Reals| with impulse response h: Ints — Reals
that has the properties

h(n) =0ifn <0, and h(n)=0ifn>1L,
where L is some positive integer. Such a system is called afinite impulse response (FIR) system

because the interesting part (the non-zero part) of the impulse response is finite in extent. Because
of that property, the convolution sum becomes a finite sum,

00 L—-1
y(n) = Z x(n —m)h(m) = Z x(n —m)h(m). (8.22)
m=—00 m=0

L isthe length of the impul se response.

This sum, since it is finite, is convenient to work with. It can be used to define a procedure for
computing the output of an FIR system given itsinput. This makes it easy to implement on a com-
puter. We will see that it is also reasonably straightforward to implement certain infinite impulse
response (11R) filters on a computer.

A continuous-time finite impulse response could be defined, but in practice, continuous-time sys-
tems rarely have finite impulse responses, so there is not as much motivation for doing so. More-
over, even though the convolution integral acquires finite limits, this does not make it any more
computable. Computing integrals on a computer is a difficult proposition whether the limits are
finite or not.

8.4. FINITE IMPULSE RESPONSE (FIR) FILTERS 221

Probing further: Causality

We can give a much more general and formal definition of causality that does not
require a system to be LTI. Consider a system S:[A — B| — [A — B| that
operates on signals of type [A — B]. Assume A is an ordered set and B is any
ordinary set. An ordered set is one with relations “<” and “>" where for any two
elements a and b, one of the following assertions must be true:

a=b, a>b 0o a<hb.

Examples of ordered sets are Ints and Reals.

An example of a set that is not an ordered set is Ints x Ints where we define the
ordering relation “<” so that (a,b) < (¢,d) if a < cand b < ¢, and we similarly
define “>". Under these definitions, for the elements (1,2) and (2,1), none of the
above assertions is true, so the set is not ordered.

However, we could define the ordering relation “ <” so that (a,b) < (c, d) if one of
the following istrue:
a<cor

a=c, andb < c.

The relation “>" could be similarly defined. Under these definitions, the set is
ordered.

Define afunction Prefix,: [A — B] — [A; — B] that extracts a portion of asignal
uptot € A. Formaly, A; C Asuchthata € A; ifa € Aanda < ¢. Then for all
x € [A — B]andfordlt € A, (Prefix,(z))(t) = x(t).

A system S iscausd if foral t € Aandfor all z,y € [A — B
Prefix, (z) = Prefix,(y) = Prefix,(S(x)) = Prefix,(S(y)).

The symbol “=-" reads “implies.” In words, the system is causal if when two input
signals have the same prefix up to time ¢, it follows that the two corresponding
output signals have the same prefix up to time ¢.

222 CHAPTERS8. FILTERING

Example 8.12: We have seen in example 8.1 a 3-point moving average. An L-point
moving average system with input has output y given by

y(n) = -

1

L—1
Z x(n —m).
m=0

The output at index n isthe average of the most recent L inputs. Such afilter iswidely
used on Wall Street to try to detect trends in stock market prices. We can study its
properties. Firgt, it is easy to see that it isan LTI system. In fact, it is an FIR system
with impulse response
_J1/L if0<n<L
hn) = { 0 otherwise

To see this, just let x = §. The frequency response is the DTFT of this impulse re-
sponse,

o0

Hw) = Z h(m)e ™™

m=—00

With the help of the useful identity?

L—1 L

]_ _
Yam=—2 (8.23)
o 1—a

we can write the frequency response as
1 (1—e Wk
Hw) == ——
@ =7 (1—e—w>

where we have let ¢ = e~*. We can plot the magnitude of the frequency response
using Matlab as follows (for L = 4):2

L = 4;

onega = [-pi:pi/250:pi];

H= (1/L)*(1-exp(-i*omega*L))./(1l-exp(-i*onega));
pl ot (onega, abs(H));

x| abel (" frequency in radians/sanple’);

2You can verify the identity by multiplying both sidesby 1 — a.
3This issues a “divide by zero” warning, but yields a correct plot nonetheless. The magnitude of the frequency
response at w = 0is1, asyou can verify using L' Hopital’srule.

8.4. FINITE IMPULSE RESPONSE (FIR) FILTERS 223

: :
0.9 3 :
- h .

N [

: .

amplitude
o o o <]
» ul o ~
T T T T
| | |

©
w
T

i .
. e
0.2 /\ S AN /\ -

1o l :
AN { N
0.1 SNV B S

$ \ 'X | ¥ \ S Wa
A §
Ny ’x! Y \\/ 11 I iy Y \/ Ny \//
L \/ It | i d o I
-3 -2 -1 0 1 2 3
frequency in radians/sample

Figure 8.8: The magnitude response of the moving average filter with
lengths L = 4 (solid line), 8 (dotted line), and 16 (dashed line).

The plot is shown in figure 8.8, together with plotsfor L = 8 and L. = 16. Notice that
the plot shows only the frequency range —m < w < w. Since the DTFT is periodic
with period 27, this plot simply repeats outside this range.

Notice that in all three cases shown in figure8.8, the frequency response has a lowpass
characteristic. A constant component (zero frequency) in the input passes through the
filter unattenuated. Certain higher frequencies, such as /2, are completely eliminated
by the filter. However, if the intent was to design a lowpass filter, then we have not
done very well. Some of the higher frequencies are attenuated only by afactor of about
1/10 (for the 16 point moving average) or 1/3 (for the four point moving average). We
can do better than that with more intelligent filter design.

8.4.1 Design of FIR filters

The moving average system in example 8.12 exhibits a lowpass frequency response, but not a par-
ticularly good lowpass frequency response. A great deal of intellectual energy has historically gone
into finding ways to choose the impulse response of an FIR filter. The subject is quite deep. Fortu-
nately, much of the work that has been doneis readily available in the form of easy-to-use software,

224 CHAPTERS8. FILTERING

S0 one does not need to be particularly knowledgeable about these techniques to be able to design
good FIR filters.

Example 8.13: Matlab's filter design facilities in its DSP toolbox provide some well-
studied algorithms for filter design. For example,

>> h = remez(7,[0,0.125,0.25,1],[1,1,0,0])
h =
Colums 1 through 6
0. 0849 0.1712 0.1384 0.1912 0.1912 0.1384
Col ums 7 through 8
0.1712 0. 0849

This returns the impulse response of a length 8 FIR lowpass filter. The arguments to
ther enez function specify thefilter by outlining approximately the desired frequency
response. You can use Matlab’s on-line help to get the details, but in brief, the argu-
ments above define a passband (aregion of frequency where the gain isroughly 1) and
astopband (aregion of frequency where the gain is roughly 0). The first argument, 7
specifies that the length of the filter should be 8 (you will have to ask The MathWorks
why thisis off by one). The second argument, [0, 0. 125, 0. 25, 1], specifies that
the first frequency band begins at 0 and extends to 0.1257 radians/sample, and that
the second band begins at 0.257 and extends to « radiang/sample. (The = factor is left
off.) The unspecified band, from 0.125x to 0.257, isa“don’t care” region, atransition
band that allows for agradual transition between the passband and the stopband.

The last argument, [1, 1, 0, 0] , specifies that the first band should have a magni-
tude frequency response of approximately 1, and that the second band should have a
magnitude frequency response of approximately 0.

The frequency response of this filter can be directly calculated and plotted using the
following (rather brute force) Matlab code:

onega = [-pi:pi/250:pi];

H= h(1) + h(2)*exp(-i*omega) + h(3)*exp(-i*2*onmega) + ...
h(4)*exp(-i*3*onega) + h(5)*exp(-i*4*onmega) + ...
h(6) *exp(-i*5*onega) + h(7)*exp(-i*6*onmega) + ...
h(8)*exp(-i*7*onega);

pl ot (onega, abs(H));

The result is shown in figure 8.9, where it is plotted together with the magnitude re-
sponse of a moving average filter with the same length. Notice that the attenuation

8.4. FINITE IMPULSE RESPONSE (FIR) FILTERS 225

3
o

0.9 . B N
o o
/o o

N ;
. .

0.8 . B T
. .

amplitude
o o o <]
» ul o ~
T T T T
| | | |

o
w
T
1

. .
. .
. .
/\ . : /\
0.2 . . N
' P $%
é v [o\ f Y
H p : 5
.

01 : :
- A ¥ -
: (. yf

. . . o

frequency in radians/sample

Figure 8.9: Magnitude response an FIR filter designed using the Parks-
McClellan algorithm, compared to an ordinary moving average.

in the stopband is better for the filter designed using the r enez function than for the
moving average filter. Also notice that it is not zero, despite our request that it be zero,
and that the passband gain is not one, despite our request that it be one.

The r emez function used in this example applies an optimization algorithm called the Parks
McClellan algorithm, which is based on the Remez exchange algorithm (hence the name of the
function). This algorithm ensures that the sidelobes (the humps in the stopband) are of equal size.
This turns out to minimize their maximum size. The Parks-McClellan algorithm iswidely used for
designing FIR filters.

In this example, the r enez function is unable to deliver afilter that meets our request. The gain
in the stopband is not zero, and the gain in the passband is not one. Generaly, thisis the problem
with filter design (and much of the rest of life); we cannot have what we want. We can get closer
by using more resources (also as in much of life). In this case, that means designing a filter with
alonger impulse response. Since the impulse response is longer, the filter will be more costly to
implement. Thisis because the finite summation in (8.22) will have more terms.

Example 8.14: Consider for example the impulse response returned by

226 CHAPTERS8. FILTERING

0.8 n

amplitude
o
(o]

T

|

041 n

0 1 1 1 1 1 1 1
-3 -2 -1 0 1 2 3
frequency (radians/sample)

Figure 8.10: Magnitude frequency response of a 64-point lowpass FIR filter
designed with the Parks-McClellan algorithm.

h = renez(63,[0,0.125,0.25,1],[1,1,0,0]);

This has length 64. The magnitude frequency response of this can be calculated using
the following Matlab code (see lab C.10 for an explanation):

H=fft(h, 1024);
magni t ude = abs([H(513:1024),H(1:512)]);
pl ot ([-pi: pi/512: pi-pi/1024], magnitude);

Thisis plotted in figure 8.10.

The frequency response achieved in this example appears in figure8.10 to exactly match our re-
guirements. However, this plot is somewhat deceptive. It suggests that the magnitude frequency
response in the stopband is in fact zero. However, it is not, except at certain discrete frequencies.
If you zoom in sufficiently on the plot, you will see that. Instead of zooming such plots, engineers
usually construct such plots using alogarithmic vertical axis, as explained in the next subsection.

8.4. FINITE IMPULSE RESPONSE (FIR) FILTERS 227

8.4.2 Decibels

The amplitude response of afilter is the magnitude of the frequency response. It specifies the gain
experienced by a complex exponentia at that frequency. This gainissimply the ratio of the output
amplitude to the input amplitude. Since it is the ratio of two amplitudes with same units, the gain
itself is unitless.

It is customary in engineering to give gainsin alogarithmic scale. Specifically, if the gain of afilter
at frequency w is|H (w)|, then we give instead

G(w) = 20log o (| H (w)]). (8.29)

This has units of decibels, written dB. The multiplication by 20 and the use of base 10 logarithms
is by convention (see box on page229).

Example 8.15: The plot in figure 8.10 is redone using the following Matlab com-
mands,

H=fft(h, 1024);
dB = 20*| 0og10(abs([H(513: 1024), H(1: 512)]));
pl ot ([-pi: pi/512: pi-pi/1024], dB);

After some adjustment of the axes, the yields the plot in figure8.11. Notice that in the
passband, thegainis0 dB. Thisisbecause logo(1) = 0. Zero decibels corresponds to a
gain of unity. In the stopband, the gain isalmost -70 dB, avery respectabl e attenuation.
If thiswere an audio signal, then frequency components in the stopband would probably
not be audible as long as there is some signal in the passband to mask them. They are
70 dB weaker than the components in the passband, which trandlates into a factor of
3162 smaller in amplitude, since

201log((1/3162) ~ —70.

We can find the gain given decibels by solving 8.24) for |H (w)| in terms of G(w) to
get
|H(w)| = 109)/20,

In this case, in the stopband
|H(w)| = 1077920 ~ 1/3162.

Notice that 20log(0) = —oo. Thus, whenever the gain is zero, the gain in decibels is
—oo. The downward spikes in figure 8.11 occur at frequencies where the gain is zero,
or —oo dB. The spikes do not necessarily precisely show this because the plot does
not necessarily evaluate the gain at precisely the frequency that yields zero, hence the
ragged bottoms.

228 CHAPTERS8. FILTERING

20

amplitude (in dB)
A
o
T
|

_60 - .

_100 | | | | | | |

frequency (radians/sample)

Figure 8.11: Magnitude frequency response in decibels of a 64-point low-
pass FIR filter designed with the Parks-McClellan algorithm.

8.4. FINITE IMPULSE RESPONSE (FIR) FILTERS 229

Probing further: Decibels

The term “decibel” is literaly one tenth of a bel, which is named after Alexander
Graham Bell. This unit of measure was originally developed by telephone engi-
neers at Bell Telephone Labs to designate the ratio of the power of two signals.

Power is a measure of energy dissipation (work done) per unit time. It is measured
in watts for electronic systems. One bdl is defined to be a factor of 10 in power.
Thus, 21000 watt hair dryer dissipates 1 bel, or 10 dB, more power than a 100 watt
light bulb. Let p; = 1000 watts be the power of the hair dryer and p, = 100 be the
power of the light bulb. Then theratio is

logyo(p1/p2) = 1 bel.

In decibels, this becomes

101ogo(p1/p2) = 10 dB.

Comparing against (8.24) we notice a discrepancy. There, the multiplying factor is
20, not 10. That is because the ratio in (8.24) is aratio of amplitudes, not powers.
In electronic circuits, if an amplitude represents the voltage across a resistor, then
the power dissipated by the resistor is proportional to the square of the amplitude.
Let a; and ay be two such amplitudes. Then the ratio of their powersis

10log;o(ai/a3) = 201ogyg(a1/az).
Hence the multiplying factor of 20 instead of 10.

A 3 dB power ratio amounts to afactor of 2 in power. In amplitudes, thisis aratio
of v/2. The edge of the passband of a bandpass filter is often defined to be the
frequency at which the power drops to half, which is the frequency where the gain
is 3 dB below the passband gain. The magnitude frequency response hereis 14/2
times the passband gain.

In audio technology, decibels are used to measure sound pressure. You might hear
statements like “ajet engine at 10 meters produces 120 dB of sound.” But decibels
measure power ratios, not absolute power, so what does such a statement mean?
By convention, sound pressure is measured relative to a defined reference of 20
micropascals, where a pascal is a pressure of 1 newton per square meter. For most
people, thisis approximately the threshold of hearing at 1 kHz. Thus, a sound at O
dB is barely audible. A sound at 10 dB has 10 times the power. A sound at 100 dB
has 100 times the power. You would not be surprised to learn, therefore, that the
jet engine cited above would probably make you deaf without ear protection.

230 CHAPTERS8. FILTERING

8.5 Infiniteimpulseresponse (1IR) filters

The equation for an FIR filter (8.22) is a difference equation relating the output at index n to the
inputs at indices n — L + 1 through n. A more general form of this difference equation includes
more indices of the output,

L—1 M-1
y(n) = Z x(n —m)b(m) + Z y(n —m)a(m) (8.25)
m=0 m=1

where L and M are positive integers, and b(m) and a(m) are filter coefficients, which are usually
real valued. If all the a coefficients are zero, then this reduces to an FIR filter with impul se response
b = h. However, if any a coefficient is non-zero, then the impulse response of this filter will never
completely die out, since the output keeps getting recycled to affect future outputs. Such afilter is
caled aninfiniteimpulse response or | IR filter, or sometimes arecursive filter.

Example 8.16: Consider acausal LTI system defined by the difference equation
Vnelnts, y(n)=az(n)+0.9y(n—1).

We can find the impulse response by letting « = ¢, the Kronecker deltafunction. Since
the system is causal, we know that h(n) = 0 for n < 0 (see page220). Thus,

yn) = 0 ifn<0
y(0) = 1

y(l) = 0.9

y(2) = 0.9°

y(3) = 0.9°

Noticing the pattern, we conclude that

y(n) = (0.9)"u(n),

where v isthe unit step, seen beforein (2.15),

1 ifn>0
u(n) = { 0 otherwise (8.26)

The output y and the magnitude of the frequency response (in dB) are plotted in figure
8.12. Notice that this filter has about 20 dB of gain at DC, dropping to about -6 dB at
the Nyquist frequency.

8.5.1 DedigninglIR filters

Designing IR filters amounts to choosing the a and b coefficients for 8.25). As with FIR filters,
how to choose these coefficients is awell-studied subject, and the results of this study are (for the

8.5. INFINITE IMPULSE RESPONSE (IIR) FILTERS 231

1
0]
0.8) i
Q
Q
0.6 i
0.4 B
N TTTTT??????@@@
-5 0 5 10 15 20 25 30
discrete time index
30
o
kel
£
3]
e}
2
£
IS
c
_lo | | | | | | |

frequency (radians/sample)

Figure 8.12: Impulse response (top) and magnitude frequency response in
dB (bottom) of a simple causal IIR filter.

232 CHAPTERS8. FILTERING

most part) available in easy-to-use software. There are four widely used methods for calculating
these coefficients, resulting in four types of filters called Butterworth, Chebyshev 1, Chebyshev
2, and dliptic filters.

Example 8.17: We can design one of each of the four types of filters using the Matlab
commands but t er, chebyl, cheby2, el i p. The arguments for each of these
specify either a cutoff frequency, which is the frequency at which the filter achieves
-3 dB gain, or in the case of cheby?2, the edge of the stopband. For example, to get
lowpass filters with a gain of about 1 from O to /8 radians/sample, and a stopband at
higher frequencies, we can use the following commands:

N = 5;

Wh = 0. 125;

[B1, Al] = butter(N, W);
[B2, A2] = chebyl(N, 1, W);
[B3, A3] = cheby2(N, 70, 0. 25);
[B4, A4] = ellip(N 1,70, W);

The returned values are vectors containing the a and b coefficients of 8.25). The mag-

nitude frequency response of the resulting filtersis shown in figure8.13. In that figure,

we show only positive frequencies, since the magnitude frequency response is symmet-
ric. We also only show the frequency range from 0 to 7, since the frequency responseis
periodic with period 27. Notice that the Butterworth filter has the most gradual rolloff
from the passband to the stopband. Thus, for a given filter order, a Butterworth filter
yields the weakest |owpass characteristic of the four. The elliptic filter has the sharpest
rolloff. The Butterworth filter, on the other hand, has the smoothest characteristic. The
Chebyshev 1 filter has ripple in the passband, the Chebyshev 2 filter has ripple in the
stopband, and the elliptic filter hasripple in both.

In the above Matlab commands, N is the filter order, equal to L and M in @.25).
It is a constraint of these filter design techniques that L = M in @.25). Wh is the
cutoff frequency, as afraction of 7 radians/sample. A cutoff frequency of 0.125 means
0.1257 = /8 radians/sample. The“1” inthe cheby 1 command specifies the amount
of passhand ripple that we are willing to tolerate (in dB). The 70 in the cheby?2 and
el I'i p commands specifies the amount of stopband attenuation that we want (in dB).
Finaly, the 0.25 in the cheby 2 line specifies the edge of the stopband.

8.6 Implementation of filters

We now have several waysto describe an LTI system (afilter). We can give a state-space description,
a frequency response, an impulse response, or a difference equation such as 8.25) or (8.22). All
are useful. The state-space description and the difference equations prove the most useful when
constructing the filter.

8.6. IMPLEMENTATION OF FILTERS 233

20 20
0 0
% -20 % -20
[9) @
8 -40 S -40
= =
E -60 E -60
-80 -80
-100 -100
0 1 2 3 0 1 2 3
frequency (radians/sample) frequency (radians/sample)
20 20
0 0
g_%/ -20 % -20
[9) [3)
8 -40 S -40
= =
E -60 E -60
~80 m -80 m
-100 -100
0 1 2 3 0 1 2 3
frequency (radians/sample) frequency (radians/sample)

Figure 8.13: Four frequency responses for 5-th order IIR filters of type But-
terworth (upper left), Chebyshev 1 (upper right), Chebyshev 2 (lower left),
and Elliptic (lower right).

234 CHAPTERS8. FILTERING

A redlization of afilter in hardware or software is called an implementation. Do not confuse filter
design with filter implementation. The term “filter design” is used in the community to refer to
the choice of frequency response, impulse response, or coefficients for a difference equation, not to
how the frequency response isimplemented in hardware or software. In this section, we talk about
implementation.

The output y of an FIR filter with impulse response /1 and input x is given by @.22). The output of
an IR filter with coefficients a and b is given by (8.25). Each of these difference equations defines
a procedure for calculating the output given the input. We discuss various ways of implementing
these procedures.

8.6.1 Matlab implementation

If z isfinite, and we can interpret it as an infinite signal that is zero outside the specified range, then
we can compute the output of an FIR filter using Matlab’s conv function, and the output of an [IR
filterusingfil ter.

Example 8.18: Consider an FIR filter with an impulse response of length L. If x isa
vector containing the P values of the input, and h is a vector containing the L values
of the impulse response, then

y = conv(x, h);

yields a vector containing L + P — 1 values of the output.

For IIR examplesusing fi | t er , seelab C.10. This strategy, of course, only works for finite input
data, since Matlab requires that the input be available in afinite vector.

Discrete-time filters can be implemented using standard programming languages and using assem-
bly languages on specialized processors (see boxes). These implementations do not have the limi-
tation that the input be finite.

8.6.2 Signal flow graphs

We can describe the computations in a discrete-time filter using a block diagram with three visual
elements, aunit delay, amultiplier, and an adder. In the convolution sum for an FIR filter,

notice that at each n we need accessto z(n), x(n—1), z(n—2), - - -, z(n— L+1). We can maintain
this set of values by cascading a set of unit delay elements to form a delay line, as shown in figure
8.14.

8.6. IMPLEMENTATION OF FILTERS

Probing further: Javaimplementation of an FIR filter

The following Java class implements an FIR filter:

1 class FIR{

2 private int |ength;

3 private doubl e[] del ayLi ne;

4 private doubl e[] inpResp;

5 private int count = O;

6 FI R(doubl e[] coefs) {

7 Il ength = coefs.|ength;

8 i npResp = coefs;

9 del ayLi ne = new doubl e[| engt h];

10 }

11 doubl e get Qut put Sanpl e(doubl e i nput Sanpl e) {
12 del ayLi ne[count] = i nput Sanpl e;

13 doubl e result = 0.0;

14 int index = count;

15 for (int i=0; i<length; i++) {

16 result += inpResp[i] * del ayLi ne[i ndex--];
17 if (index < 0) index = length-1

18 }

19 if (++count >= |l ength) count = O;

20 return result;

21}

22}

A class in Java (and in any object-oriented language) has both data members and
methods. The methods are procedures that operate on the data members, and may
or may not take arguments or return values. In this case, there are two procedures,
“FIR” and “getOutputSample.” The first, lines 6-10, is a constructor, which is a
procedure that is called to create an FIR filter. It takes one argument, an array of
double-precision floating-point numbers that specify the impulse response of the
filter. The second, lines 11-22, takes a new input sample value as an argument and
returns a new output sample. It also updates the delay line using a strategy called
circular buffering. That is, the count member is used to keep track of where each
new input sample should go. It gets incremented (line 19) each time the get Cut -
put Sanpl e() method is called. When it exceeds the length of the buffer, it gets
reset to zero. Thus, at al times, it contains the L most recently received input data
samples. The most recent one is at index count in the buffer. The second most
recent isat count - 1, orif that is negative, at | ength - 1. Line 17 makes
sure that the variable i ndex remains within the confines of the buffer asweiterate
through the loop.

235

236 CHAPTERS8. FILTERING

Probing further: Programmable DSP implementation of an FIR filter

The following section of code is the assembly language for a programmable DSP,
which is a specialized microprocessor designed to implement signal processing
functions efficiently in embedded systems (such ascellular telephones, digital cord-
lesstelephones, digital audio systems, etc.). Thisparticular codeisfor the Motorola
DSP56000 family of processors.

1 fir novep x:input, x:(ro0)

2 clr a x:(r0)-,x0 y: (r4)+,y0
3 rep nD

4 mac x0, y0, a x: (r0)-,x0 y:(r4)+,yo0
5 macr x0,y0, a (ro)+

6 novep a, X: out put

7 jmp fir

This processor has two memory banks called x and y. The code assumes that each
input sample can be successively read from a memory location called i nput , and
that the impulse response is stored in y memory beginning at an address stored in
register r4. Moreover, it assumes that register rO contains the address of a section
of X memory to use for storing input samples (the delay line), and that this register
has been set up to perform modulo addressing. Modulo addressing means that if
it increments or decrements beyond the range of its buffer, then the address wraps
around to the other end of the buffer. Finally, it assumes that the register mO con-
tains an integer specifying the number of samples in the impulse response minus
one.

The key line (the one that does most of the work) is line 4. It follows arep
instruction, which causes that one line to be repeatedly executed the number of
times specified by register m0. Line 4 multiplies the data in register x0 by that
in yO and adds the result to a (the accumulator). Such an operation is caled a
multiply and accumulate or mac operation. At the same time, it loads x0 with an
input sample from the delay line, in x memory at a location given by rO. It also
loads register yO with a sample from the impulse response, stored in y memory at
alocation given by r4. At the same time, it increments rO and decrements r4. This
one-line instruction, which carries out several operations in parallel, is obviously
highly tuned to FIR filtering. Indeed, FIR filtering isamajor function of processors
of this type.

8.6. IMPLEMENTATION OF FILTERS 237

x(n) = X-D) [x(n-2) — x(n-L+1)
—» delay —P> delay —> - —> delay —>
Figure 8.14: A delay line.
x(n) —]x(n-1) —] x(n-2) — x(n-L+1)
g t g t - ... t g
Pl delay Pl delay > P ey >
I A \ 4 A 4 \ 4
h(0) h(1) h(2) h(L-1)
y(n)

Figure 8.15: A tapped delay line realization of an FIR filter, described as a
signal flow graph.

For each integer n, the output sample is the values in the delay line scaled by h(0), A(1), ---,
h(L — 1). To obtain the values in the delay line, we simply tap the delay line, as shown in figure
8.15. Thetriangular boxes denote multipliers that multiply by a constant (h(1m), in this case). The
circles with the plus signs denote adders. The structure in figure8.15 is called atapped delay line
description of an FIR filter.

Diagrams of the type shown in figure 8.15 are called signal flow graphs because they describe
computations by focusing on the flow of signals between operators. Signal flow graphs can be quite
literal descriptions of digital hardware that implements afilter. But what they really describe is the
computation, irrespective of whether the implementation is in hardware or software.

An |IR filter can also be described using a signa flow graph. Consider the difference equation in
(8.25). A signal flow graph description of this equation is shown in figure8.16. Notice that the left
side is structurally equivalent to the tapped delay line, but stood on end. The right side represents
the feedback in the filter, or the recur sion that makesit an IR filter rather than an FIR filter.

The filter structure in figure 8.16 can be simplified somewhat by observing that since the left and
right sides are LTI systems, their order can be reversed without changing the output. Once the order
is reversed, the two delay lines can be combined into one, as shown in figure8.17. There are many
other structures that can be used to realize IR filters.

The relative advantages of one structure over another is afairly deep topic, depending primarily on
an understanding of the effects of finite precision arithmetic. It is beyond the scope of this text.

238 CHAPTERS8. FILTERING

x(n) y(n)
\ \
unit unit
delay delay
n-1 n-1
xn-1) [1 yn-1)
unit unit
delay delay
x(n-2) y(n-2)
unit unit
delay b(L—l) a(M—l) delay
x(n-L+1) Ll |« Y("-M+1)

Figure 8.16: A signal flow graph describing an IIR filter. This is called a
direct form 1 filter structure.

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some thought,
requires some conceptualization. Problems labeled E are usually mechanical, those labeled T re-
quire aplan of attack, those labeled C usually have more than one defensible answer.

1. E Consider an LTI discrete-time system Filter with impulse response

where § isthe Kronecker delta function.

(a) Sketch h(n).

(b) Suppose the input signal z:Ints — Realsissuch that V n € Ints, x(n) = cos(wn),
where w = 7 /4 radians/sample. Give a simple expression for y = Filter (z).

(c) Givethevaueof H(w) for w = m/4, where H isthe frequency response.

2. E Consider the continuous-time moving average system S, whose impul se response is shown
in figure 8.3. Find its frequency response. The following fact from calculus may be useful:

b
/ e“edw = e — e

a

for real a and b and complex ¢. Use Matlab to plot the magnitude of this frequency response

over the range -5 Hz to 5 Hz. Note the symmetry of the magnitude response, as required by
(8.21).

8.6. IMPLEMENTATION OF FILTERS 239

y(n)
x(n) b(0)
—+ >
A 4 A 4
unit unit
a(l) delay delay b(l)
5 g
unit unit
a(z) delay delay b(2)

@
y(n)
x(n) b(0)
+ >

A 4
unit

a(1) del'ay bi(1)
unit

a(2) delay b(2)

aM-1) _ Ldeay | p-1)

(b)

Figure 8.17: (a) A signal flow graph equivalent to that in figure 8.16, ob-
tained by reversing the left and right components. (b) A signal flow graph
equivalent to that in (a) obtained by merging the two delay lines into one.
This is called a direct form 2 filter structure.

240 CHAPTERS8. FILTERING

3. E Consider a continuous-time LTI system with impulse response given by
VteReals, h(t)=0(t—1)+0d(t—2),
where § isthe Dirac delta function.

(&) Find asimple egquation relating the input = and output y of this system.
(b) Find the frequency response of this system.

(c) Use Matlab to plot the magnitude frequency response of this system in therange-5to 5
Hz.

4. E Consider adiscrete-time LTI system with impulse response A given by
Vnelnts, h(n)=73n)+20(n—1)

(a) Plot the impulse response.
(b) Find and sketch the output when the input is u, the unit step, given by @.26).
(c) Find and sketch the output when the input is aramp,

r(n) = n ifn>0
] 0 otherwise

(d) Find the frequency response.
(e) Show that the frequency response is periodic with period 2.
(f) Show that the frequency response is conjugate symmetric.
(g) Giveasimplified expression for the magnitude response.
(h) Giveasimplified expression for the phase response.
(i) Suppose that the input x is given by
Vnelnts, xz(n)=cos(mn/2+ n/6)+ sin(mn + 7/3).
Find the output .

5. E Consider the sawtooth signal shown in figure 8.18. This is a periodic, continuous-time
signal. Suppose it isfiltered by an LTI system with frequency response

H(w) = 1 if jw| < 2.5 radians/second
“=1 0 otherwise

What is the output?

6. E Supposethat the following difference equation relates the input 2 and output y of adiscrete-
time, causal LTI system S,

y(n) +ay(n —1) = z(n) + z(n - 1),

for some constant c.

8.6. IMPLEMENTATION OF FILTERS 241

Figure 8.18: A sawtooth signal.

(a) Find the impulse response h.
(b) Find the frequency response H.
(c) Find asinusoidal input with non-zero amplitude such that the output is zero.

(d) Use Matlab to create a plot of the magnitude of the frequency response, assuming oo =
—0.9.

(e) Find astate-space description for this system (define the state s and find A, b, ¢, d).
(f) Suppose @ = 1. Find the impulse response and frequency response. Make sure your
answer makes sense (check it against the original difference equation).

7. T Each of the statements below refers to a discrete-time system S with input = and output .
Determine whether the statement istrue or false. The signa « below is the unit step, given by
(8.26). The signal ¢ below isthe Kronecker delta function.

() Suppose you know that if x is a sinusoid then y is a sinusoid. Then you can conclude
that SisLTI.

(b) Supposeyou know that S isLTI, and that if x(n) = cos(mn/2), theny(n) = 2 cos(mn/2).
Then you have enough information to determine the frequency response.

(c) Suppose you know that S isLTI, and that if z(n) = 6(n), then

y(n) = (0.9)"u(n).

Then you have enough information to determine the frequency response.
(d) Suppose you know that S is LTI, and that if z(n) = w(n), then y(n) = (0.9 u(n).
Then you have enough information to determine the frequency response.

(e) Suppose you know that S is causal, and that input z(n) = 6(n) produces output y(n) =
d(n)+40(n—1),andinput z'(n) = §(n—2) produces output 3/ (n) = 26(n—2)+d(n—3).
Then you can conclude that S isnot LTI.

(f) Suppose you know that S is causal, and that if z(n) = §(n) + é(n — 2) then y(n) =
d(n) + d(n—1) 4+ 26(n — 2) + §(n — 3). Then you can conclude that S isnot LTI.

8. T Consider the continuous-time systems S, given by, V ¢t € Reals,

(Si(e)(t) = =(t-2),
(S2(2))(t) = 2(t+2),

242 CHAPTERS8. FILTERING

(S3(x))(t) = =(t) -2,
(Sa(x))(t) = =(2-1),
(Ss(x))(t) = =(2),
(Ss(x))(t) = ta(t),

(&) Which of these systemsislinear?
(b) Which of these systems istime invariant?
(c) Which of these systemsiis causal ?

9. T Consider an LTI discrete-time system Filter with impulse response
Vnelnts, h(n)=4dn)+dn—2),
where § is the Kronecker delta function.

() Sketch h.
(b) Find the output when the input is u, the unit step, given by 8.26).
(c) Find the output when the input is aramp,

(n) = n ifn>0
"= 0 otherwise

(d) Suppose the input signal z is such that
Vnelnts, z(n)=cos(wn),

where w = 7/2 radians/sample. Give asimple expression for y = Filter (z).
(e) Givean expression for H (w) that isvalid for al w , where H isthe frequency response.

(f) Sketch the magnitude of the frequency response. Can you explain your answer in part
(b)?

(g) Isthere any other frequency at which asinusoidal input with a non-zero amplitude will
yield an output that is zero?

10. T Consider an LTI discrete-time system Filter with impulse response
h(n) =d(n) —d(n —1)
where § is the Kronecker delta function.

(a) Sketch h(n).

(b) Suppose the input signa z:Ints — Realsissuch that vV n € Ints, x(n) = 1. Givea
simple expression for y = Filter (x).

(c) Givean expression for H (w) that isvalid for al w , where H isthe frequency response.

8.6. IMPLEMENTATION OF FILTERS 243

(d) Sketch the magnitude of the frequency response. Can you explain your answer in part
(b)?

11. T Consider adiscrete-time LTI system with impul se response A given by
Vnelnts, h(n)=dn—-1)/2+dn+1)/2
And consider the periodic discrete-time signal given by
Vnelnts, xz(n)=2+sin(mn/2) + cos(mn).

(@) Isthe system causal?

(b) Find the frequency response of the system. Check that your answer is periodic with
period 2.

(c) For the given signa z, find the fundamental frequency wy and the Fourier series coeffi-
cients X, in the Fourier series expansion,

z(n) = Z X etwokn
k=—o00
Give the units of the fundamental frequency.
(d) Assuming the input to the system is x as given, find the output.

12. T Consider a continuous-time LTI system S. Suppose that when the input is the continuous-
time unit step, given by

u(t) = { (1) Zig (8.27)

then the output y = S(u) isgiven by

=)L 0st<1
Y\ = 0, otherwise

This output y is called the step response because it is the response to a unit step.
(a) Express y in terms of sums and differences of « and Dy (u), where D; is the delay

operator.

(b) Giveasignal flow graph that produces this result y = S(u) when the input is u. Note:
We know that if two LTI systems have the same impulse response, then they are the
same system. It isafact, albeit anon-trivial one to demonstrate, that if two LTI systems
have the same step response, then they are also the same system. Thus, your signal flow
graph implements S.

(c) Useyour signal flow graph to determine what the output +f of S iswhen theinput is

() = 1, 0<t<1
YW= 0, otherwise

Plot your answer.

244 CHAPTERS8. FILTERING

x(n) y(n)
S >

Figure 8.19: Feedback composition.

(d) What isthe frequency response H (w) of S?
13. T Suppose adiscrete-time LTI system .S has impulse response

" 1/2n ifn>0
h(n) =u(n)/2" = { 0 otherwise

where u isthe unit step function (8.26).

(&) What isthe step response of this system? The step response is defined to be the output
when the input is the unit step. Hint: The identity 8.23) might be helpful.

(b) What is the frequency response? Plot the magnitude and phase response (you may use
Matlab, or do it by hand). Hint: The following variant of the identity @.23) might be

useful. If |a] < 1,
1

Z a™ = i
o 1—a
This follows immediately from (8.23) by letting L go to infinity.
(c) Suppose S is put in cascade with another identical system. What is the frequency re-
sponse of the cascade composition?

(d) Suppose S isarranged in afeedback composition as shown in figure8.19. What is the
frequency response of the feedback composition?

Chapter 9

The Four Fourier Transforms

In Chapter 6 we saw that the Fourier series describes a periodic signal as a sum of complex expo-
nentials. In Chapter 7 we saw that if the input to an LTI system is a sum of complex exponentias,
then the frequency response of the LTI system describes its response to each of the component ex-
ponentials. Thus we can calculate the system response to any periodic input signal by combining
the responses to the individual components.

The response of the LTI system to any input signal can also be obtained as the convolution of the
input signal and the impulse response. The impulse response and the frequency response give usthe
same information about the system, but in different forms. The impulse response and the frequency
response are closely related.

For discrete-time systems, the frequency response can be described as a sum of weighted complex
exponentials (the DTFT), where the weights turn out to be the impul se response samples. We will
see that the impulse response is, in fact, a Fourier series representation of the frequency response,
with the roles of time and frequency reversed from the uses of the Fourier series that we have seen
so far.

This reappearance of the Fourier seriesis not a coincidence. In this chapter, we explore this pattern
by showing that the Fourier series is aspecial case of afamily of representations of signals that are
collectively called Fourier transforms. The Fourier series applies specifically to continuous-time,
periodic signals. The discrete Fourier series applies to discrete-time, periodic signals. We complete
the story with the continuous-time Fourier transform (CTFT), which applies to continuous-time
signals that are not periodic, and the discrete-time Fourier transform (DTFT), which applies to
discrete-time signals that are not periodic.

9.1 Notation
We define the following four sets of signals:

e ContSgnals = [Reals — Comps|. Since Reals is included in Comps, ContSignals includes

245

246 CHAPTER 9. THE FOUR FOURIER TRANSFORMS

continuous-time signals whose range is Reals, and so we won’t need to consider these sepa-
rately.

ContSgnals includes continuous-time signals, but we are not insisting that the domain be
interpreted as time. Indeed, sometimes the domain could be interpreted as space, if we are
dealing with images. In this chapter we will see that it is useful sometimes to interpret the
domain as frequency.

e DiscSgnals = [Ints — Comps|.

Thisincludes discrete-time signals whose domain istime or sample number, but again we are
not insisting that the domain be interpreted as time.

e ContPeriodic, C ContSgnals.

This set is defined to contain al continuous signals that are periodic with period p, wherep is
areal number.

e DiscPeriodic, C DiscSgnals.
This set is defined to contain all discrete signals that are periodic with period p, where p isan
integer.

Note that whenever we talk about periodic signals we could equally well talk about finite signals,
where the finite signal consists of one cycle of the periodic signal.

9.2 TheFourier series(FS)

The continuous-time Fourier series of aperiodic signal = € ContPeriodic, is

VteReals a(f)= > Xpekwor, 9.1)

where wy = 27 /p (radians/second). The Fourier series coefficients are given by

Vmelnts, X, =

Ofx(t)eimWOtdt. (9.2

1
p

Observe that the sequence of Fourier series coefficients given by ©.2) can be regarded as a signal
X € DiscSgnals, where

Vm e lnts, X(m)= Xp,.

So we can define a system Fourier Series, with domain ContPeriodic, and range DiscSgnals such
that if the input isthe periodic signal x, the output isits Fourier series coefficients, X. That is,

FourierSeries,: ContPeriodic, — DiscSgnals.

9.3. THE DISCRETE FOURIER TRANSFORM (DFT) 247
x U ContPeriodic, —— X O DiscSgnals X O DiscSgnals x O ContPeriodic,
———p| FourierSeries, |, — 3| InverseFourierSeries, | .

(@
(b)
x 0 DiscPeriodic, XU DiscPeriodicy XU DiscPeriodic, x 0 DiscPeriodic,
—3| DFTp | —— — | InverseDFT, |
©) (d)
x O DiscSgnals X O ContPeriodicon X O ContPeriodicon x U DiscSignals
p| DTFT > — 3| InverseDTFT |
(e ®
0 contSianal % 0 ContSianal X O ContSgnals x O ContSignals
x O ContSignals ontSignals
CTFT —p| InverseCTFT |,
(9 (h)

Figure 9.1: Fourier transforms as systems.

This system is the first of four forms of the Fourier transform, and is depicted graphically in figure
9.1(a). Itsinverseis a system

InverseFourierSeries,: DiscSignals — ContPeriodic,,

depicted in figure 9.1(b).

The two systems, FourierSeries, and InverseFourierSeries,, are inverses of each other, because
(see box)

Vz € ContPeriodic,, (InverseFourierSeries, o FourierSeries,)(z) = =« (9.3
VX e DiscSgnals, (FourierSeries, o InverseFourierSeries,)(X) = X (9.9)
9.3 Thediscrete Fourier transform (DFT)
The discrete-time Fourier series (DFS) expansion for = € DiscPeriodic, is (see (7.11))
p—1 A
Vnelnts, z(n)= Z X eikwon (9.5
k=0

248

CHAPTER 9. THE FOUR FOURIER TRANSFORMS

Probing further: Showing inverserelations

In this chapter, and in previous chapters, we have given formulas that describe
time-domain functions in terms of frequency-domain functions, and vice versa. By
convention, a formula that gives the frequency-domain function in terms of the
time-domain function is called a Fourier transform, and the formula that gives
the time-domain function in terms of the frequency-domain functioniscalled anin-
verse Fourier transform. As shown in figure 9.1, these transforms can be viewed
as systems that take as inputs signals in one domain and return signals in the other.
We discuss four distinct Fourier transforms and their corresponding inverses. In
each case, it is possible to show that the Fourier transform and its inverse are in
fact inverses of one another, as stated in (9.3) and (9.4). We prove the second rela-
tion, (9.4), to illustrate how this is done. Similar proofs can be carried out for al
four types of Fourier transforms, although sometimes these proofs require you to
be adept at manipulating Dirac delta functions, which requires significant mathe-
matical skill.

Let X < DiscSgnals be the Fourier series for some = € ContPeriodic,. That is,
x = InverseFourierSeries,(X). Let Y = FourierSeries,(x). We now show that
Y=X,ieY, =X, fordl m.

1

Y,, = x(t)e” Mot dt by (9.2)

i
—

o0

0
p
/ [Y Xpe™otemm0tdt, by (9.1)
0

==

k=—o0

=1

p
— Z —Xk/ei(k_m)wotdt
p

k=—o00 0
p

1 1 {2
“ X / dt+ > —Xp / et (k=mwot gy
p 5 krm P 0

= Xm7

since for k # m,
P .
/ ez(kfm)wotdt = 0.
0

9.3. THE DISCRETE FOURIER TRANSFORM (DFT) 249

where wy = 27/p (radians/sample). The Fourier series coefficients can be found using the formula

152 :
VEkelnts, X;= , Z z(m)e~mkwo, (9.6)

m=0

For historical reasons, the discrete Fourier transform (DFT) is the DFS with dlightly different
scaling. It is defined by

p=l .
Vnelnts, z(n)=]% S X etkwon (9.7)
k=0
p=1 4
Vkelnts, X, = Y x(m)e Mo, (9.8)
m=0

Obvioudly, the DFT coefficients are related to the DFS coefficients by
X, = pXy.

Thisscaling is somewhat unfortunate, since it means that the DFT coefficients do not have the same
units asthe signa x, but the scaling isfirmly established in the literature, so we stick to it. We omit
the prime when it is clear whether we are talking about the Fourier transform instead of the Fourier
series.

Observe that DFT,,(z) is adiscrete signal that is itself periodic with period p. To verify this, note
that for any integer NV and for al integers &,

p—1
Xl/erNp _ Zx(m)efzm(kJer)wo
=0

p—1

= x(m)e
m=0
p—1

= Z x(m)e”mkwo o =imNIT - gnce) = 27 /p

m=0

—imkwq efimpro

1
0
- Xl

p—
— Z x(m)e—imkwo
m=

Comparing (9.5) and (9.8) and observing that x is periodic with period p, we see
that x(—m) isthe m-th Fourier series coefficient for the function X! The DFT is
rather special, therefore, in that both the time and frequency domain representations
of afunction are Fourier series, and both are periodic.

250 CHAPTER 9. THE FOUR FOURIER TRANSFORMS

The DFT therefore is the function
DFT,: DiscPeriodic, — DiscPeriodic,,
given by (9.6). Theinverse DFT isthe function
InverseDFT ,: DiscPeriodic, — DiscPeriodic,,

given by (9.5). Asin (9.3), (9.4), DFT, and InverseDFT, are inverses of each other. This can
be verified using methods similar to those in the box on page248. The DFT and its inverse are
computed by systems that we can represent as shown in figure9.1(c) and (d).

The DFT is the most useful form of the Fourier transform for computation, because the system
DFT, iseasily implemented on a computer. Both summations (9.7) and (9.8) are finite. Moreover,

there is an algorithm called the fast Fourier transform (FFT) that calculates these summations
with far fewer arithmetic operations than the most direct method. Moreover, because the sums are
finite, the DFT always exists. There are no mathematical problems with convergence.

9.4 Thediscrete-Time Fourier transform (DTFT)
We have shown that the frequency response of an LTI system is related to the impul se response by

Vwe Reals, H(w)= Z h(m)e™ ™,

m=—00

H iscalled the discrete-time Fourier transform (DTFT) of h. For any z € DiscSgnals (not just
an impulse response), its DTFT is

Vwe Reals, X(w)= § x(m)e=im, 9.9

m=—00

Of course, this definition is only valid for those = and those w where the sum converges (it is not
trivial mathematically to characterize this).

Notice that the function X is periodic with period 27. l.e, X(w) = X(w + 27 N) for any integer
N, because

e Wt — e—z(w+27rN)t

for any integer N. Thus, X € ContPeriodic,.

Comparing (9.9) and (9.1), you can recognize that x(—n) is the n-th Fourier series
coefficient for the periodic function X. Thus, the DTFT isjust a Fourier series, but
with the role of time and frequency reversed! The time-domain function is a set of
Fourier series coefficients for a periodic frequency domain function.

9.5. THE CONTINUOUS-TIME FOURIER TRANSFORM 251

The DTFT (9.9) has similar structure to the DFT (9.8). In fact, the DTFT can be viewed as a gener-
alization of the DFT to signals that are neither periodic nor finite. In other words, as p approaches
infinity, wo approaches zero, so instead of a discrete set of frequencies spaced by « we have a
continuum.

The DTFT isasystem
DTFT: DiscSgnals — ContPeriodicy,

and itsinverseis
InverseDTFT: ContPeriodic,, — DiscSgnals.

Theinverseisgiven by

27 .
Vnelnts, xz(n)=x [X(w)e“"dw. (9.10)
0

Notice that because X is periodic, this can equivalently be written as
V€ Ints ()—i]X()iw"d
n , x(n)= o w)e w.

We integrate over one cycle of the periodic function, so it does not matter where we start. These are
depicted graphically in figure9.1(e) and (f).

DTFT and InverseDTFT are inverses of each other. This follows from the fact that FourierSeries,
and InverseFourier Series, are inverses of each other.

9.5 Thecontinuous-time Fourier transform

The frequency response and impulse response of a continuous-time LTI system are related by the
continuous-time Fourier transform (CTFT), more commonly called simply the Fourier trans-
form (FT),

VweRedls, Hw) = [h(t)e“!dt. (9.11)

The CTFT can be defined for any function h € ContSignals where the integral exists. It need not
be the impulse response of any system, and it need not be periodic or finite. The inverse relation is

VieReals, h(t)=L [Hw)e do. (9.12)

Itistrue but difficult to prove that the CTFT and the inverse CTFT are indeed inverses.

The CTFT can be viewed as ageneraization of both the FS and DTFT where neither the frequency
domain nor the time domain needs to be periodic. Alternatively, it can be viewed as the last re-
maining Fourier transform, where neither time nor frequency is discrete. Graphically, the CTFT is
asystem as shown in figure 9.1(g) and (h).

The four Fourier transforms are summarized in table9.1.

252

CHAPTER 9. THE FOUR FOURIER TRANSFORMS

Aperiodictime Periodic time
Continuous frequency Discrete frequency
Aperiodic
frequency CTFT: ContSgnals — ContSgnals FourierSeries,: ContPeriodic, — DiscSgnals
Continuous (o) — I Dot gt v 1 [—imwot g
time (w) = z(t)e m= /m(t)e t
—o0 0
InverseCTFT: ContSgnals — ContSignals InverseFourier Series,:
- Discdgnals — ContPeriodic,
1 iwt oo
z(t) = — X(w)e™ dw)
0=5 [X = 3 e
e k=—o00
Periodic
frequency DTFT: DiscSignals — ContPeriodicy, DFT,: DiscPeriodic, — DiscPeriodic,
Discrete - —inw = ,
X(w) = z(n)e X = z(n)e ko
time n:z_:oo ' ; "
InverseDTFT: ContPeriodicar — DiscSgnals | InverseDFT,,: DiscPeriodic, — DiscPeriodic,
L[1%
2(n) = - /X(w)eiundw z(n) =]_)kz_:oXkeikwon

Table 9.1: The four Fourier transforms summarized. The column and row
titles tell you when to use the specified Fourier transform and its inverse.
The first row applies to continuous-time signals, and the second column
applies to periodic signals. Thus, if you have a continuous-time periodic
signal, you should use the Fourier transform at the upper right, which is the
Fourier series.

9.5. THE CONTINUOUS-TIME FOURIER TRANSFORM 253

Probing further: Multiplying signals

We have seen that convolution in the time domain corresponds to multiplication
in the frequency domain. It turns out that this relationship is symmetric, in that
multiplication in the time domain corresponds to a peculiar form of convolution in
the frequency domain. That is, given two discrete-time signals = and p with DTFTs
X and P, if we multiply them in the time domain,

Vnelnts, y(n)=z(n)pn)

then in the frequency domain, Y (w) = (X®P)(w), where the symbol &” indicates
circular convolution, defined by

2w

VweRels, (X®P)(w) = % /X(Q)P(w — Q)do.
0

To verify this, we can substitute into the above integral the definitions for the
DTFTs X (w) and P(w) to get

1

27 00 o
(X®P)(w) = %/< Z x(m)e_mm> (Z p(k,)e—i(w—ﬂ)k:) a0

0 m=-—00 k=—o00
00 00 1 2
— —iwk - —iQ(m—k)
Z p(k)e Z J:(m)27r/e dQ
k=—o00 m=—00 0
= > plR)z(k)e ™",
k=—o00

where the last equality follows from the observation that the integral in the middle
expression is zero except when m = k, when it has value one. Thus, (X ® P)(w)
isthe DTFT of y = xp, aswe claimed.

The continuous-time case is somewhat simpler. If wehaveV ¢ € Reals, y(t) =
x(t)p(t) then in the frequency domain,

™

VweRedls, Y(w)= QL(X ¢ P)(w) = % / X(Q)P(w — Q)d.

The”«” indicates ordinary convolution.

254 CHAPTER9. THE FOUR FOURIER TRANSFORMS
9.6 Relationship to convolution

Suppose a discrete-time LTI system has impulse response h and frequency response H. We have
seen that if the input to this system is a complex exponential, é“", then the output is H (w)e“".

Suppose the input is instead an arbitrary signal = with DTFT X. Using the inverse DTFT relation,
we know that

2m
1 ,
Vnelnts, xz(n)= Dy /X(w)e“‘mdw
s
0

View this as a summation of exponentials, each with weight X (w). An integra, after al, is sum-
mation over a continuum. Each term in the summation is X (w)é“™. If this term were an input
by itself, then the output would be H (w) X (w)é“™. Thus, by linearity, if the input is z, the output
should be ,
17 A
Vnelnts, yn)=— /H(w)X(w)eW”dw

2
0

Comparing to the inverse DTFT relation for y(n), we see that

VweReals, Y(w)=Hw)X(w)| (9.13)

Thisis the frequency-domain version of convolution
Vnelnts, y(n)=(h*z)(n).

Thus, the frequency response of an LTI system multiplies the DTFT of the input. Thisis intuitive,
since the frequency response gives the weight imposed by the system on each frequency component
of the input.

Equation (9.13) applies equally well to continuous-time systems, but in that case, H isthe CTFT of
the impulse response, and X isthe CTFT of the input.

9.7 Propertiesand examples

In this section, we give a humber of useful properties of the various Fourier transforms, and a
number of illustrative examples. The properties together with the examples can often be used to
avoid solving integrals or summations to find the Fourier transform of some signal, or to find an
inverse Fourier transform.

9.7.1 Conjugate symmetry

We have aready shown (see (7.10)) that for real-valued signals, the Fourier series coefficients are
conjugate symmetric,

9.7. PROPERTIESAND EXAMPLES 255

In fact, all the Fourier transforms are conjugate symmetric if the time-domain function is real.
We illustrate this with the CTFT. Suppose z: Reals — Realsis area-valued signal, and let X =
CTFT(x). Ingenera, X (w) will be complex-valued. However, from (9.11), we have

o0

XCwl = [e

—00

= / x(t)e it

= X(w)v

Thus,
X(w) = X*(~w),

i.e. for real-valued signals, X (w) and X (—w) are complex conjugates of one another.

We can show that, conversely, if the Fourier transform is conjugate symmetric, then the time-domain
function isreal. To do this, write the inverse CTFT

_ 1 7 iwt
x(t) = Dy / X(w)e“ dw
and then conjugate both sides,
(t) — i 7X() —iwtd
X = o w)e Ww.

By changing variables (replacing w with —w) and using the conjugate symmetry of X', we can show
that

which implies that z(t) isrea for all ¢.

The inverse Fourier transforms can be used to show that if a time-domain function is conjugate
symmetric,
z(t) = z*(—1),

then its Fourier transform is real. The same property applies to all four Fourier transforms.

In summary, if afunction in one domain (time or frequency) is conjugate symmet-
ric, then the function in the other domain (frequency or time) isredl.

9.7.2 Time shifting

Given a continuous-time function = and its Fourier transform X = CTFT(x), let y be defined by

VteReals, y(t)=x(t—r)

256 CHAPTER 9. THE FOUR FOURIER TRANSFORMS

for some real constant 7. Thisiscalled time shifting or delay. Wecan find Y = CTFT(y) in terms
of X asfollows,

o0

Y(w) = /y@fwﬁ

—00
o0

= / z(t —1)e “tat

—0o0
o0

_ / x(t)e—iw(t-i-r)dt

Thus, in summary,

yt) =zt —7) & Y(w) =e @ X (w). (9.14)

The bidirectional arrow indicates that this relationship works both ways. If you know that Y (w) =
e~ X (w), then you can conclude that y(t) = z(t — 7).

Example9.1: One of the simplest Fourier transforms to compute isthat of = when

where ¢ is the Dirac delta function. Plugging into the formula,

o0

X(w) = /x@(mﬁ

—0o0
o0

= / S(t)e “tat
e—in

= 1,

where we have used the sifting property of the delta function. The Fourier transform
isaconstant, 1. Thisindicates that the Dirac delta function, interestingly, contains all
frequencies in equal amounts.

To see how the sifting property works, note that the integrand is zero everywhere except wheret = 0, at which point
the complex exponential evaluatesto 1. Then the integral of the delta function itself has value one.

9.7. PROPERTIESAND EXAMPLES 257

Moreover, this result isintuitive if one considers an LTI system with impulse response
h(t) = d(t). Such a system responds to an impulse by producing an impulse, which
suggests that any input will be simply passed through unchanged. Indeed, its frequency
responseis H(w) = 1 for al w € Reals, so given an input = with Fourier transform X,
the output y has Fourier transform

Since the output has the same Fourier transform as the input, the output is the same as
the input.

Using (9.14), we can now find the Fourier transform of another signal
x(t) =0(t — 1),

for some constant 7 € Reals. Itis
X(w) =e T,

Note that, as required, thisis conjugate symmetric. Moreover, it has magnitude 1. Its
phaseis —wT, alinear function of w.

Again, we can gain some intuition by considering an LTI system with impulse response
h(t) =6(t — 7). (9.15)
Such a system introduces a fixed time delay of 7. Its frequency response is
H(w) =e T, (9.16)

Since this has magnitude 1 for al w, it tellsus that al frequencies get through the delay
system unattenuated, as expected. However, each frequency w will experience a phase
shift of —wr, corresponding to atime delay of 7.

Discrete-time signals are similar. Consider a discrete-time signal « with X = DTFT(z), and let y
be defined by
VteReas y(n)=xz(n—-r1)

for some integer constant 7. By similar methods, we can find that

y(n) =x(n—7) & Y(w) = e “" X (). (9.17)

Example 9.2: Suppose we have a discrete-time signal = given by

where ¢ is the Kronecker delta function. It is easy to show from the DTFT definition
that
X(w) =1.

258 CHAPTER 9. THE FOUR FOURIER TRANSFORMS

Using (9.17), we can now find the Fourier transform of another signal
z(n) =d0(n — 1),
for some constant 7 € Ints. Itis
X(w) =e T,

Notice that if 7 = 0, thisreducesto X (w) = 1, as expected.

9.7.3 Linearity

Consider three discrete-time signals x, x;, z2, related by
z(n) = ax1(n) + bra(n).
Then it is easy to see from the definition of the DTFT that
X(w) = aXi(w) + bX(w)
where X = DTFT(z), X; = DTFT(21), and X5 = DTFT(22).
The same linearity property applies to the CTFT,
z(t) = ax1(t) + bao(t) & X(w) = aXi(w) + bXa(w)

Linearity of the Fourier transform is one of the most useful properties for avoiding evaluation of
integrals and summations.

Example 9.3: Consider for example the discrete-time signal x given by
z(n) =6(n+1)+d0(n—1),

where § is the Kronecker delta function. Using linearity, we know that the DTFT of
x isthe sum of the DTFT of §(n + 1) and the DTFT of §(n — 1). From the previous
example, we know those two DTFTS, so

X(w) = e oW
because 7 is —1 and 1, respectively. Using Euler’s relation, we can simplify thisto get
X(w) = 2cos(w).

Interestingly, the DTFT of this example turns out to be real. Thisis because the time-
domain function is conjugate symmetric (the conjugate of something real is itself).
Moreover, since it is real in the time domain, the DTFT turns out to be conjugate
symmetric.

9.7. PROPERTIESAND EXAMPLES 259
Linearity can aso be used to find inverse Fourier transforms.

Example 9.4: Suppose you are told that a continuous-time signal has Fourier trans-
form
X(w) = cos(w).

How would you find the time-domain function? You could evaluate the inverse CTFT,
but the integration that you would have to perform is quite difficult. Instead, use Euler’'s
relation to write

X(w) = (e +e7™) /2.

Then use linearity. The inverse Fourier transform of this sum will be the sum of the
inverse Fourier transforms of the terms. These we can recognize from ©.15) and (9.16),
so

z(t) = (6(t+1)+d(t—1))/2,

where ¢ isthe Dirac delta function.

9.74 Constant signals

We have seen that the Fourier transform of a delta function is a constant. With the symmetries
that we have observed between time and frequency, it should come as no surprise that the Fourier
transform of a constant is adelta function.

Consider first a continuous-time signal x given by
VteReals, z(t)=K

for somered constant K. ItsCTFT is
Xw) =K / e~

which is not easy to evaluate. Thisintegral is mathematically subtle. The answer is
Vwe Reals, X(w)=271Ké(w),

where ¢ is the Dirac delta function. What this says is that a constant in the time domain is concen-
trated at zero frequency in the frequency domain (which should not be surprising). Except for the
multiplying constant of 27, we probably could have guessed this answer. We can verify this answer
by evaluating the inverse CTFT,

17 .
z(t) = %/X(w)ezmdw

260 CHAPTER 9. THE FOUR FOURIER TRANSFORMS

where the final step follows from the sifting property of the Dirac delta function. Thus, in summary,

2(t) = K & X(w) =27Kd(w)| (9.18)

The discrete-time case is similar, but there is one subtlety because the DTFT is periodic. Let x bea
discrete time signal where
Vnelnts, z(n)=K

for somerea constant K. ItsDTFT is
Vwe |[-mn], X(w)=2rKdw),

where § isthe Dirac deltafunction. Thisis easy to verify using theinverse DTFT. Again, thissaysis
that a constant in the time domain is concentrated at zero frequency in the frequency domain (which
should not be surprising). However, recall that aDTFT is periodic with period 27, meaning that for
al integers NV,

X(w) = X(w+ N2m).

Thus, in addition to adeltafunction at w = 0, there must beone at w = 27, w = —27, w = 4, €tc.
This can be written using a shift-and-add summation,

Vwe Reals, X(w)=2rK Z d(w — k2m).

k=—o0

Thus, in summary,

z(n)=K & X(w)=2rK io: d(w — k2m). (9.19)

k=—o00

9.7.5 Frequency shifting and modulation

Suppose that z is a continuous-time signal with CTFT X. Let y be another continuous-time signal
defined by '
y(t) = x(t)e™’

for somereal constant wy. The CTFT of y is easy to compute,

oo

Y(w) = /y@(mﬁ

— 00
[e.°]

= / z(t)eote= gy

—00
[e. o]

= / w(t)e_i(“’_wo)tdt

—00

= X(w —wo).

9.7. PROPERTIESAND EXAMPLES 261

Thus, the Fourier transform of y isthe same asthat of x, but shifted to the right by «y. In summary,

y(t) = 2(t)e*! & Y(w) = X(w — wo)- (9.20)

This result can be used determine the effect of multiplying a signal by a sinusoid, a process called
modulation (see exercise 5 and lab C.10).

Example 9.5: Suppose
y(t) = x(t) cos(wot).

Use Euler’'s relation to rewrite this
y(t) = () (e + e /2,
Then use (9.20) to get the CTFT,

Y(w)=(X(w—wy) + X(w+wp))/2.

We can combine (9.20) with (9.18) to get the following facts:

z(t) = ! & X(w) = 275(w — wp). (9.21)

This says that a complex exponential signal with frequency wy is concentrated in the frequency
domain at frequency wy, which should not be surprising. Similarly,

|2(t) = cos(wot) © X(w) = m(d(w — wo) + 0(w + wo)). | (9.22)

We can get a similar set of results for discrete-time signals. We summarize the results here, and
leave their verification to the reader (see exercise3):

y(n) = z(n)em" & Y(w) = X(w — wp). (9.23)

‘y(n) = z(n)cos(won) & Y(w) = (X(w —wp) + X(w + wp))/2. ‘ (9.24)

z(n) = " & X(w) =27 k:ij: O(w — wo — k2m). (9.25)

z(n) = cos(won) & X(w) = Wk:i.:: (0(w —wo — k27) + 0(w + wo — k2m)). (9.26)

Additional properties of Fourier transforms are explored in the exercises.

262 CHAPTER 9. THE FOUR FOURIER TRANSFORMS

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some thought,
requires some conceptualization. Problems labeled E are usually mechanical, those labeled T re-
quire aplan of attack, those labeled C usually have more than one defensible answer.

1. E Show that if two discrete-time systems with frequency responses H; (w) and Hy(w) are
connected in cascade, that the DTFT of the output is given by Y (w) = H) (w)Hz(w)X (w),
where X (w) isthe DTFT of the input.

2. T Consider a continuous-time signal = with Fourier transform X. Let y be such that

Vte Reals, y(t)=xz(at),

for some real number a. Show that its Fourier transform Y is such that

VweReads, Y(w)=X(w/a).

3. T Consider a discrete-time signal « with Fourier transform X. For each of the new signals
defined below, show that its Fourier transform is as shown.

(@) If y issuch that

v € lnts, 0 otherwise

y(n) = { z(n/N) if nisaninteger multiple of N
for some integer IV, then its Fourier transform Y is such that
Vwe Reas, Y(w)=X(wN).

(b) If w issuch that
Vnelnts, w(n)=xz(n)em,

for some real number «, then its Fourier transform W is such that

Vwe Reals, W(w)=X(w-—a).

(c) If zissuch that
Vnelnts, z(n)=xz(n)cos(an),

for some real number «, then its Fourier transform Z is such that
Zw)=(X(w—-a)+X(w+a))/2

4. T Consider the FIR system described by the following block diagram:

9.7. PROPERTIESAND EXAMPLES 263

transmission medium (air)

X(t) w(t) Z(t)

y(t) / y(t)
>§<f\) »(X > Hw —>»

Cos (0w, 1) Cos (w 1)

Figure 9.2: AM transmission. In the figure, attenuation and noise in the
transmission medium are neglected, so the received signal is the same
as the transmitted signal, y. The circular components multiply their input
signals.

X(n) | wnit [X(n-1) | unit X(n-2)> unit |X(n-3)
delay gl

delay delay

The notation here is the same as in figure 8.15. Suppose that this system has frequency
response H. Define anew system with the identical structure as above, except that each unit
delay isreplaced by a double delay (two cascaded unit delays). Find the frequency response
of that systemintermsof H.

5. T This exercise discusses amplitude modulation or AM. AM is a technigque that is used
to convert low frequency signals into high frequency signals for transmission over a radio
channel. Conversion of the high frequency signal back to a low frequency signal is called
demodulation. The system structure is depicted in figure 9.2. The transmission medium
(air, for radio signals) is approximated here as a medium that passes the signal y unaltered.
Suppose your AM radio station is allowed to transmit signals at acarrier frequency of 740 kHz
(thisis the frequency of KCBSin San Francisco). Suppose you want to send the audio signal
x : Reals — Reals. The AM signal that you would transmit is given by, for al ¢ € Reals,

y(t) = z(t) cos(wct),

where w. = 27 x 740,000 isthe carrier frequency (in radians per second). Suppose X (w)
is the Fourier transform of an audio signal with magnitude as shown in figure9.3.

(@) Show that the Fourier transform Y of y interms of X is

Y(w) =(X(w—we) + X(w+we))/2.

264

CHAPTER 9. THE FOUR FOURIER TRANSFORMS
IX(w)|
a

w

>

-2m0,000 O 210,000

Figure 9.3: Magnitude of the Fourier transform of an example audio signal.

(b)

(©

(d)

Carefully sketch |Y (w)| and note the important magnitudes and frequencies on your
sketch.

Note that if X(w) = 0 for |w| > 27 x 10,000, then Y(w) = 0 for ||jw| — |w|| >
27 x 10,000. Inwords, if the signa = being modulated is bandlimited to less than 10
kHz, then the modulated signal is bandlimited to frequencies that are withing 10 kHz of
the carrier frequency. Thus, an AM radio station only needs to occupy 20 kHz of the
radio spectrum in order to transmit audio signals up to 10 kHz.

At the receiver, the problem is to recover the audio signal = from y. One way is to
demodulate by multiplying y by asinewave at the carrier frequency to obtain the signal
w, where

w(t) = y(t) cos(wet).

Wheat is the Fourier transform W of w in terms of X? Sketch |IW (w)| and note the
important magnitudes and frequencies.

After performing the demodulation of part (c), an AM receiver will filter the received
signal through alow-pass filter with frequency response H (w) such that H (w) = 1 for
lw] <27 x 10,000 and |H (w)| = 0 for |w| > 27 x 20, 000. Let z be thefiltered signal,
as shown in figure 9.2. What is the Fourier transform Z of z? What is the relationship
between z and z?

6. Inthefollowing parts, assume that = is adiscrete-time signal given by

Vnelnts, z(n)=0n+1)+dn)+dn—1),

and that S isan LTI system with frequency response H given by

@

Vw e Reals, H(w)=e .

Find X = DTFT(x) and make awell-labeled sketch for w € [—m, 7] in radiang/sample.
Check that X is periodic with period 2.

(b) Lety = S(x). FindY = DTFT(y).
(c) Findy = S(x).
(d) Sketch z and y and comment on what the system S does.

9.7. PROPERTIESAND EXAMPLES 265

7. Consider a causal discrete-time LTI system .S with input = and output y such that
Vnelnts, y(n)=zn)+ayln—1)
where a € Realsisagiven constant such that |a| < 1.

(a) Find theimpulse response h of S.

(b) Find the frequency response of S by letting the input be ¢~ and the output be H (w)e“™,
and solving for H(w).

(c) Useyour resultsin parts (a) and (b) and the fact that the DTFT of an impulse response
is the frequency response to show that h given by

Vnelnts, h(n)=a"u(n)

has the discrete-time Fourier transform H = DTFT(h) given by

H(w) = !

1 —qgew’

where u(n) isthe unit step,

(n) = 1 ifn>0
Y= 0 otherwise

(d) Use Matlab to plot h(n) and |H(w)| for a = —0.9 and a = 0.9. You may choose the
interval of n for your plot of A, but you should plot |H (w)| intheinterval w € [—m, 7.
Discuss the differences between these plots for the two different values of a.

8. Suppose adiscrete-time signal « has DTFT given by
X(w) = isin(Kw)

for some positive integer K. Note that X (w) is periodic with period 2, asit must beto be a
DTFT.

(a) Determine from the symmetry properties of X whether the time-domain signal x isreal.
(b) Find x. Hint: Use Euler'srelation and the linearity of the DTFT.

9. Consider a periodic continuous-time signal = with period p and Fourier series X: Ints —
Comps. Let y be another signal given by

y(t) = z(t —7)
for some real constant 7. Find the Fourier series coefficients of y in terms of those of X.
10. Consider the continuous-time signal given by

_ sin(wt/T)
™) = ~GeT)

266

11.

12.

CHAPTER 9. THE FOUR FOURIER TRANSFORMS

Show that its CTFT is given by

T, ifw <n/T
X(w) = { 0, iflw|>n/T

The following fact from calculus may be useful:
b
/ e“edw = e — @

for rea a and b and complex c.

If 2 isacontinuous-time signal with CTFT X, then we can define a new time-domain function
y such that
VteReas y(t)=X(t).

That is, the new time domain function has the same shape as the frequency domain function
X. Thenthe CTFT Y of y isgiven by

Vwe Reals, Y(w)=_2rz(-w).

That is, the frequency domain of the new function has the shape of the time domain of the
old, but reversed and scaled by 2. This property is called duality because it shows that time
and frequency are interchangeable. Show that the property is true.

Use the results of exercises10 and 11 to show that a continuous time signal x given by

x(t):{ r/a, if|t| <a

0, if [t >a
where a isapositive real number, has CTFT X given by

sin(aw)

X(w) = ()

Chapter 10

Sampling and Reconstruction

Digital hardware, including computers, take actions in discrete steps. So they can deal with discrete-
time signals, but they cannot directly handle continuous-time signals that are prevalent in the phys-
ical world. This chapter is about the interface between these two worlds, one continuous, the
other discrete. A discrete-time signal is constructed by sampling a continuous-time signal, and
a continuous-time signal isreconstructed by interpolating a discrete-time signal.

10.1 Sampling

A sampler for complex-valued signalsis a system
Sampler : [Reals — Comps| — [Ints — Comps], (10.1)

where T is the sampling interval (it has units of seconds/sample). The system is depicted in
figure 10.1. The sampling frequency or samplerateis f; = 1/, in units of samples/second (or
sometimes, Hertz), or ws = 27/T, in units radians/second. If y = Sampler,(z) then y is defined
by

Vnelnts, y(n)=axnTl). (10.2)

x: Reals - Comps y: Ints - Comps

Sampler; >

Figure 10.1: Sampler.

267

268 CHAPTER 10. SAMPLING AND RECONSTRUCTION

Basics: Units

Recall that frequency can be given with any of various units. The units of the f in
(10.3) and (10.4) are Hertz, or cycles/second. In (10.3), it is sensible to give the
frequency as w = 2x f, which has units of radians/second. The constant 27 has
units of radians/cycle, so the units work out. Moreover, the time argument ¢ has
units of seconds, so the argument to the cosine function, 27 ft, has units of radians,
as expected.

In the discrete time case (10.4), it is sensible to give the frequency as 27 fT°, which
has units of radians/sample. Thetiming interval 1" has units of seconds/sample, so
again the units work out. Moreover, the integer n has units of samples, so again the
argument to the cosine function, 27 fnT’, has units of radians, as expected.

In general, when discussing continuous-time signals and their sampled discrete-
time signals, it is important to be careful and consistent in the units used, or con-
siderable confusion can result. Many texts talk about nor malized frequency when
discussing discrete-time signals, by which they simply mean frequency in units of
radiang/sample. This is normalized in the sense that it does not depend on the
sampling interval.

10.1.1 Sampling a sinusoid

Let z: Reals — Reals be the sinusoidal signal

Vt e Reals, x(t) = cos(2mft), (10.3)
where f isthe frequency of the sinewave in Hertz. Let y = Sampler,(z). Then

Vnelnts, y(n)=-cos2rfnT). (10.4)

Although this looks similar to the continuous-time sinusoid, there is a fundamental difference. Be-
cause the index n is discrete, it turns out that the frequency f is indistinguishable from frequency
f + fs when looking at the discrete-time signal. This phenomenon is called aliasing.

10.1.2 Aliasing

Consider another sinusoidal signal w,
u(t) = cos(2m(f + N fs)t),
where N issomeinteger and f; = 1/7". If N # 0, then thissignal is clearly different from x. Let

w = Sampler(u).

10.1. SAMPLING 269

Then
w(n) = cos(2m(f + N fs)nT) = cos(2w fnT + 2rNn) = cos(2w fnT) = y(n),

because Nn is an integer. Thus, even though v # z, Sampler;(u) = Sampler(x). Thus, after
being sampled, the signals and v are indistinguishable. This phenomenon is called aliasing,
presumably because it implies that any discrete-time sinusoidal signal has many continuous-time
identities (its “identity” is presumably its frequency).

Example 10.1: A typical sample rate for voice signalsis f; = 8000 Hz, so the sam-
pling interval isT = 0.125 msec/sample. A continuous-time sinusoid with frequency
440 Hz, when sampled at this rate, isindistinguishable from a continuous-time sinusoid
with frequency 8,440 Hz, when sampled at this same rate.

Example 10.2: Compact discs are created by sampling audio signals at f; = 44,100

Hz, so the sampling interval is about 7" = 22.7 usec/sample. A continuous-time si-
nusoid with frequency 440 Hz, when sampled at this rate, is indistinguishable from a
continuous-time sinusoid with frequency 44,540 Hz, when sampled at this same rate.

The frequency domain analysis of the previous chapters relied heavily on complex exponential
signals. Recal that a cosine can be given as a sum of two complex exponentials, using Euler’'s
relation,

cos(2m ft) = 0.5(e?2™t 4 727 It),
One of the complex exponentials is at frequency f, an the other is at frequency —f. Complex
exponential exhibit the same aliasing behavior that we have illustrated for sinusoids.

Let 2: Reals — Comps be A
Vit e Reals, xz(t) =2/

where f isthe frequency in Hertz. Let y = Sampler-(x). Then for al n in Ints,

y(n) — 6i27rfnT

Consider another complex exponential signal w,
u(t) _ 6i27r(f+Nfs)z‘/

where N is someinteger. Let
w = Sampler(u).
Then
w(n) _ ei27r(f+Nfs)nT _ €i27rfnT€i27ersnT _ €i27rfnT _ y(n)’
because ¢’2™NVfsnT — 1. Thus, as with sinusoids, when we sample a complex exponential signal
with frequency f at samplerate f;, it isindistinguishable from one at frequency f + f; (or f+ N fs

for any integer N).

There is considerably more to this story. Mathematically, aliasing relates to the periodicity of the
frequency domain representation (the DTFT) of adiscrete-time signal. We will also see that the ef-
fects of aliasing on real-valued signals (like the cosine, but unlike the complex exponential) depend
strongly on the conjugate symmetry of the DTFT as well.

270 CHAPTER 10. SAMPLING AND RECONSTRUCTION

-
Lall
]

frequency

8 kHz _| Continuous-time _+*

signal N L

4 kHz °

» Perceived
pitch

| -
I | et
4 kHz 8 kHz

Freguency of the continuous-time sinusoid

——-

sweep

Figure 10.2: As the frequency of a continuous signal increases beyond the
Nyquist frequency, the perceived pitch starts to drop.

10.1.3 Perceived pitch experiment

Consider the following experiment! Generate a discrete-time audio signal with an 8 kHz sample
rate according to the formula (10.4). Let the frequency f begin at 0 Hz and sweep upwards through
4 kHz to (at least) 8 kHz. Use the audio output of a computer to listen to the resulting sound. The
result is illustrated in figure 10.2. As the frequency of the continuous-time sinusoid rises, so does
the perceived pitch, until the frequency reaches 4 kHz. At that point, the perceived pitch begins to
fall rather than rise, even as the frequency of the continuous-time sinusoid continues to rise. It will
fall until the frequency reaches 8 kHz, at which point no sound is heard at all (the perceived pitch is
0 Hz). Then the perceived pitch begins to rise again.

That the perceived pitch rises from O after the frequency f rises above 8000 Hz is not surprising. We
have already determined that in a discrete-time signal, afrequency of f isindistinguishable from a
frequency f + 8000, assuming the sample rate is 8000 Hz. But why does the perceived pitch drop
when f rises above 4 kHz?

The frequency 4 kHz, f,/2, is called the Nyquist frequency, after Harry Nyquist, an engineer at
Bell Labs who, in the 1920s and 1930s, laid much of the groundwork for digital transmission of
information. The Nyquist frequency turns out to be a key threshold in the relationship between
discrete-time and continuous-time signals, more important even than the sampling frequency. In-
tuitively, this is because if we sample a sinusoid with a frequency below the Nyquist frequency
(below half the sampling frequency), then we take at least two samples per cycle of the sinusoid. It
should be intuitively appealing that taking at least two samples per cycle of asinusoid has some key

1This experiment can be performed at http://www.eecs.berkel ey.edu/@al/eecs20/week 13/aliasing.html. Similar exper-
iments are carried out in lab C.11.

10.1. SAMPLING 271

0.6

0.4

0.2

0 0.5 1 15 2 25 3 35 4 4.5
time (seconds) x 1073

Figure 10.3: A sinusoid at 7.56 kHz and samples taken at 8 kHz.

significance. The two sample minimum allows the samples to capture the oscillatory nature of the
sinusoid. Fewer than two samples would not do this. However, what happens when fewer than two
samples are taken per cycle is not necessarily intuitive. It turns out that the sinusoid masquerades
as one of another frequency.

Consider the situation when the frequency f of a continuous-time sinusoid is 7,560 Hz. Figurel0.3
shows 4.5 msec of the continuous-time waveform, together with samples taken at 8 kHz. Notice
that the samples trace out another sinusoid. We can determine the frequency of that sinusoid with
the help of figure 10.2, which suggests that the perceived pitch will be 8000 — 7560 = 440 Hz (the
slope of the perceived pitch lineis —1 in thisregion). Indeed, if we listen to the sampled sinusoid,
it will be an A-440.

Recall that a cosine can be given as a sum of complex exponentials with frequencies that are nega-
tives of one another. Recall further that acomplex exponential with frequency f isindistinguishable
from one with frequency f + N f;, for any integer N. A variant of figure 10.2 that leverages this
representation isgiven in figure10.4.

In figure 10.4, as we sweep the frequency of the continuous-time signal from O to 8 kHz, we move
from left to right in the figure. The sinusoid consists not only of the rising frequency shown by the
dotted line in figure 10.2, but a so of a corresponding falling (negative) frequency as shown in figure

272

CHAPTER 10. SAMPLING AND RECONSTRUCTION

> A ° e
g \: .a
) o e .
3 ° . °
o ° L] .
QL o ‘.. o
8kHz L indistinguishable _e:
°..f.requen0|es \.., ...
4kHz _ o’ o
¥ perceived
pitch
0 kHz [
4 kHz 8 kHz
-4 kHz —| . reconstructed
.* °, audio . '..

——-

sweep

Figure 10.4: As the frequency of a continuous signal increases beyond the
Nyquist frequency, the perceived pitch starts to drop because the frequency
of the reconstructed continuous-time audio signal stays in the range — f/2

to fs/2.

10.2. RECONSTRUCTION 273

. Ints » Comps x: Reals -~ Comps
—py P DiscToCont P >

Figure 10.5: Discrete to continuous converter.

10.4. Moreover, these two frequencies are indistinguishable, after sampling, from frequencies that
are 8 kHz higher or lower, also shown by dotted linesin figure10.4.

When the discrete-time signal is converted to a continuous-time audio signal, the hardware perform-
ing this conversion can choose any matching pair of positive and negative frequencies. By far the
most common choice is to select the matching pair with lowest frequency, shown in figure10.4 by

the solid lines behind dotted lines. These result in a sinusoid with frequency between 0 and the
Nyquist frequency, f;/2. Thisiswhy the perceived pitch falls after sweeping past f;/2 = 4 kHz.

Recall that the frequency-domain representation (i.e. the DTFT) of a discrete-time signal is periodic
with period 27 radiang/sample. That is, if H isaDTFT, then

Vwe Reals, H(w)=H(w+2n).

In radians per second, it is periodic with period 27 f;. In Hertz, it is periodic with period f;, the
sampling frequency. Thus, in figure10.4, the dotted lines represent this periodicity. This periodicity
is another way of stating that frequencies separated by f; are indistinguishable.

10.1.4 Avoiding aliasing ambiguities

Figure 10.4 suggests that even though a discrete-time signal has ambiguous frequency content, itis
possible to construct auniquely defined continuous-time signal from the discrete-time waveform by
choosing the one unique frequency for each component that is closest to zero. Thiswill alwaysresult
in areconstructed signal that contains only frequencies between zero and the Nyquist frequency.

Correspondingly, this suggests that when sampling a continuous-time signal, if that signal contains
only frequencies below the Nyquist frequency, then this reconstruction strategy will perfectly re-
cover the signal. Thisisan intuitive statement of the Nyquist-Shannon sampling theorem.

Before probing this further, let us examine in more detail what we mean by reconstruction.

10.2 Reconstruction

Consider a system that constructs a continuous-time signal « from a discrete-time signal v,
DiscToCont: DiscSgnals — ContSgnals.

Thisisillustrated in figure 10.2. Systems that carry out such ‘discrete-to-continuous conversion
can be realized in any number of ways. Some common examples are illustrated in figure10.6, and
defined below:

274 CHAPTER 10. SAMPLING AND RECONSTRUCTION

y(n)

@ '"T=|Ilr=“'Q
X(t)

(b) | R
X(t)
ﬁX(t)

(d) ;/\ Y
 \J
w(t)

Figure 10.6: A discrete-time signal (a), a continuous-time reconstruction
using zero-order hold (b), a reconstruction using linear interpolation (c),
a reconstruction using ideal interpolation (d), and a reconstruction using
weighted Dirac delta functions (e).

10.2. RECONSTRUCTION 275

w: Reals —» Comps

y: Ints - Comps x: Reals - Comps
—p{ ImpulseGen, Q p{ LTI System S i >
y: Ints - Compg . x: Reals - Comps
p DiscToCont i >

Figure 10.7: A model for reconstruction divides it into two stages.

e zero-order hold: This means simply that the value of the each sample y(n) is held constant
for duration 7', so that z:(t) = y(n) for thetime interval fromt¢ = nT tot = (n+ 1)T, as
illustrated in figure 10.6(b). Let this system be denoted

ZeroOrderHoldr: DiscSgnals — ContSgnals.

e linear interpolation: Intuitively, this means simply that we connect the dots with straight
lines. Specifically, in the time interval from¢ = nT tot = (n + 1)T, x(t) has values
that vary along a straight line from y(n) to y(n + 1), asillustrated in figure10.6(c). Linear
interpolation is sometimes called first-order hold. Let this system be denoted

LinearInterpolator -: DiscSgnals — ContSgnals.

e ideal interpolation: Itisnot yet clear what this should mean, but intuitively, it should result
in a smooth curve that passes through the samples, as illustrated in figure10.6(d). We will
give a precise meaning below. Let this system be denoted

IdealInter polator ,-: DiscSignals — ContSgnals.

10.2.1 A modd for reconstruction

A convenient mathematical model for reconstruction divides the reconstruction process into a cas-
cade of two systems, as shown in figure10.7. Thus

x = S(ImpulseGen(y)),
where S isan LTI system to be determined. Thefirst of these two subsystems,

ImpulseGen,-: DiscSignals — ContSgnals,

276 CHAPTER 10. SAMPLING AND RECONSTRUCTION

h(t)

(b) g

T I T
h(t)

N
(d) >

AN

=T | T
h(t)

]
© | >

Figure 10.8: The impulse responses for the LTI system S in figure 10.7 that
yield the interpolation methods in figure 10.6(b-e).

constructs a continuous-time signal, where for al ¢ € Reals,

w(t) = i y(k)o(t — kT).

k=—o0

This is a continuous-time signal that at each sampling instant £7" produces a Dirac delta function
with weight equal to the sample value, y(k). This signa is illustrated in figure10.6(e). It is a
mathematical abstraction, since everyday engineering systems do not exhibit the singularity-like
behavior of the Dirac delta function. Nonetheless, it is a useful mathematical abstraction.

The second system, S, is a continuous-time LTI filter with an impulse response that determines the
interpolation method. The impulse responses that yield the interpolation methodsin figurel0.6(b-€)
are shown in figure 10.8(b-€). If

1 0<t<T
0 otherwise

h(t) = {
then the interpolation method is zero-order hold. If

1+t/T -T<t<0
h(t)y=91—-t/T 0<t<T
0 otherwise

10.3. THENYQUIST-SHANNON SAMPLING THEOREM 277

then the interpolation method islinear. If the impulse response is

_ sin(7t/T)

) wt)T

then the interpolation method is ideal. The above impulse response is called a sinc function, and
it is characterized by having no frequency components above f,/2 Hz, the Nyquist frequency. It
is this characteristic that makes it ideal. It precisely performs the strategy illustrated in figurel0.4,
where among all indistinguishable frequencies we select the ones between — £ /2 and f,/2.

If welet Sncy denote the LTI system .S when the impulse response is a sinc function, then
Ideal Interpolator » = Sincy o ImpulseGeny..

In practice, idea interpolation is difficult to accomplish. From the expression for the sinc function
we can understand why. First, this impulse response is hot causal. Second, it isinfinite in extent.
More importantly, its magnitude decreases rather slowly as ¢ increases (proportiona to 1/¢ only).
Thus, truncating it at finite length leads to substantial errors.

If the impulse response of S'is
h(t) = 6(t),

where ¢ is the Dirac delta function, then the system S is a pass-through system, and the reconstruc-
tion consists of weighted delta functions.

10.3 The Nyquist-Shannon sampling theorem

We can now give a precise statement of the Nyquist-Shannon sampling theorem:

If 2 is a continuous-time signal with Fourier transform X and if X (w) is zero outside the range
—7/T <w < «w/T, then

x = |dealInterpolator - (Sampler - (z)).

We can state this theorem dightly differently. Suppose z is a continuous-time signal with no fre-
quency larger than some fy. Then z can be recovered from its samplesif f < fs/2, the Nyquist

frequency.

A formal proof of this theorem involves some technical difficulties (it was first given by Claude
Shannon of Bell Labs in the late 1940s). But we can get the idea from the following three-step
argument. Seefigure 10.9.

Step 1. Let = be acontinuous-time signal with Fourier transform X. At this point we do not require
that X (w) is zero outside therange —7 /T < w < 7/T. We sample x with sampling interval T to
get the discrete-time signal

y = Sampler(z).

278 CHAPTER 10. SAMPLING AND RECONSTRUCTION

Probing further: Sampling

We can construct a mathematical model for sampling by using Dirac delta func-
tions. Define a pulse stream by

p(t) = fj 3(t — KT).

k=—o0

Consider a continuous-time signal « that we wish to sample with sampling period
T. That is, we define y(n) = z(nT). Construct first an intermediate continuous-
timesignal w(t) = x(t)p(t). We can show that the CTFT of w isequal tothe DTFT
of y. This gives us a way to relate the CTFT of z to the DTFT of its samples y.
Recall that multiplication in the time domain resultsin convolution in the frequency
domain, so

W(w) = %X(w) ¢ Pw) = % / X(Q)P(w — Q)d9.

It can be shown that the CTFT of p(t) is

o0

P) =2 > ko),

k=—o00

17 o

W(w) = %_/ X(Q)Q%kaoa(w —Q—k:Q%)dQ

1 &7 o
— Tkz_:oo/X(Q)é(w—Q—kT)dQ
1 & 2m
= 7 2 Xe—kp)

k=—0c0

where the last equality follows from the sifting property @.11). The next step isto
show that
Y(w)=W(w/T).

We leave this as an exercise. From this, the basic Nyquist-Shannon result follows,

Y(w) = %kiX<

Thisrelatesthe CTFT of the signal being sampled to the DTFT of the discrete-time
result.

w — 27rk)

10.3. THENYQUIST-SHANNON SAMPLING THEOREM 279

~_ il il

- 5
Samplert ImpulseGent Snc
X W z
—) M — | =
o T 0 MT 20T 3T o T

Figure 10.9: The different steps in the Nyquist-Shannon theorem.

It can be shown (see box on page 278) that the DTFT of y isrelated to the CTFT of = by

Y)=4 5 X (k).

This important relation says that the DTFT Y of y is the sum of the CTFT X with copies of it
shifted by multiples of 27 /7. There are two cases to consider.

First, if X(w) = 0 outside therange —7/T" < w < w/T, then the copies will not overlap, and in
therange — 7 < w < m,

Y (w) = %X (%) . (105)

In this range of frequencies, Y has the same shape as X, scaled by 1/7". This relationship between
X and Y isillustrated in figure 10.3, where X is drawn with atriangular shape.

In the second case, illustrated on the top of figure10.11, X does have non-zero frequency compo-
nents higher than /7. Notice that in the sampled signal, the frequencies in the vicinity of 7 are
distorted by the overlapping of frequency components above and below 7 /7" in the original signal.
Thisdistortion is called aliasing distortion.

We continue with the remaining steps, following the signals in figure10.9.
Step 2. Let w bethe signal produced by the impul se generator,
VteReals, w(t)= Z y(n)d(t —nT).

(The Fourier Transform of w isW(w) = Y (wT'). See box on page278.)

Let z be the output of the IdealInterpolator,. Its Fourier transform is smply

Z(w) = W(w)H(w)
= Y(wT)H(w),

280 CHAPTER 10. SAMPLING AND RECONSTRUCTION

w
»
>

=31 -t s 3n

Figure 10.10: Relationship between the CTFT of a continuous-time signal
and the DTFT of its discrete-time samples. The DTFT is the sum of the
CTFT and its copies shifted by multiples of 2xT", the sampling frequency in
radians per second.

X()

T !

V'S

Figure 10.11: Relationship between the FT of a continuous-time signal and
the DTFT of its discrete-time samples when the continuous-time signal has
a broad enough bandwidth to introduce aliasing distortion.

10.3. THENYQUIST-SHANNON SAMPLING THEOREM 281

where H (w) isthe frequency response of the reconstruction filter Sney.

But as seen in exercise 10 of chapter 9,

)T —n/T<w<n/T
Hw) = { 0 otherwise (106

Substituting for H and Y, we get

B TY (wT) —7/T <w<w/T
Zw) = { 0 otherwise

{ % X(w=27kT) —7/T <w<7/T
= k=—o00

0 otherwise

Step 3. If X (w) iszerofor |w]| larger than the Nyquist frequency /T, then we conclude that
Vwe Reals, Z(w)=X(w).

That is, w isidentica to z; this proves the Nyquist-Shannon result. Thisisthe case illustrated in

figures 10.3 and 10.9.

However, if X (w) does have non-zero values for some |w| larger than the Nyquist frequency, then
z will be different from z, asillustrated in figure 10.11.

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some thought,
requires some conceptualization. Problems labeled E are usually mechanical, those labeled T re-
quire aplan of attack, those labeled C usually have more than one defensible answer.

1. Consider the continuous-time signal
x(t) = cos(107t) + cos(207t) 4 cos(30mt).

(&) Find the fundamental frequency. Give the units.
(b) Find the Fourier series coefficients Ay, A1, --- and ¢1, o, - - -.

(c) Let y be the result of sampling this signal with sampling frequency 10 Hz. Find the
fundamental frequency for y, and give the units.

(d) For the same y, find the discrete-time Fourier series coefficients, Ay, A1, ---and ¢, - - -.
(e) Find
w = |dealInterpolator -(Sampler ,-(z))

for T' = 0.1 seconds.

282

CHAPTER 10. SAMPLING AND RECONSTRUCTION

(f) Isthere any aliasing distortion caused by sampling at 10 Hz? If there is, describe the
aliasing distortion in words.

(g) Givethe smallest sampling frequency that avoids aliasing distortion.

2. E Verify that Sampler - defined by (10.1) and (10.2) is linear but not time invariant.

3. E A real-valued sinusoidal signa with anegative frequency is always exactly equal to another

sinusoid with positive frequency. Consider areal-valued sinusoid with a negative frequency
—440 Hz,
y(n) = cos(—2w440nT + ¢).

Find a positive frequency f and phase 6 such that

y(n) = cos(2w fnT + 0).

T Consider a continuous-time signal « wherefor all ¢t € Reals,

o0

x(t) = Z r(t — k).

k=—o00

where -
r(t):{l 0<t<0.5

0 otherwise
(@ Isz(t) periodic? If so, what is the period?
(b) Supposethat T = 1. Give asimple expression for y = Samplery(z).

(c) Suppose that T = 0.5. Give a simple expression for y = Sampler;(z) and z =
|deal Inter polator -(Sampler (x)).

(d) Find an upper bound for 7" (in seconds) such that = = Ideallnterpolator;-(Sampler (z)),
or argue that no value of T makes this assertion true.

T Consider a continuous-time signal x with the following finite Fourier series expansion,
4
VteReals z(t)= Z cos(kwot)
k=0

where wy = 7 /4 radians/second.

(8 Giveanupper bound on T (in seconds) such that = = |dealInterpolator,.(Sampler (x)).
(b) Supposethat T = 4 seconds. Give asimple expression for y = Sampler,(z).
(c) ForthesameT = 4 seconds, give asimple expression for

w = |dealInterpolator (Sampler ,(x)).

. T Consider a continuous-time audio signal x with CTFT shown in figure10.12. Note that it

contains no frequencies beyond 10 kHz. Suppose it is sampled at 40 kHz to yield asignal that
we will call 40 Let X40 bethe DTFT of T40-

10.3. THENYQUIST-SHANNON SAMPLING THEOREM 283

H(2rtf)

1
f (kHz)

-10 [10 >

Figure 10.12: CTFT of an audio signal considered in exercise 6.

(8 Sketch | X40(w)| and carefully mark the magnitudes and frequencies.

(b) Suppose z is sampled at 20 kHz. Let x5, be the resulting sampled signal and Xy its
DTFT. Sketch and compare x5 and z49.

(c) Now suppose x issampled at 15 kHz. Let x5 be the resulting sampled signal and X5
its DTFT. Sketch and compare X5 and X15. Make sure that your sketch shows aliasing
distortion.

7. C Consider two continuous-time sinusoidal signals given by
x1(t) = cos(wit)

x9(t) = cos(wat),

with frequencies w; and wo radiang/second such that
0<w; <7/T and 0<wy<m7/T.
Show that if w; # wo then
Samplery(z1) # Samplerp(z2).

l.e., the two distinct sinusoids cannot be aliases of one another if they both have frequencies
below the Nyquist frequency. Hint: Try evaluating the sampled signalsat n = 1.

284

CHAPTER 10. SAMPLING AND RECONSTRUCTION

Appendix A

Sets and Functions

This appendix establishes the notation of sets as used in the book. It reviews the use of this mathe-
matical language to describe setsin avariety of ways, to combine sets using the operations of union,
intersection, and product, and to derive logica consequences. We also review how to formulate and
understand predicates, and we define certain sets that occur frequently in the study of signals and
systems. Finally, we review functions.

A.1l Sets

A set isacollection of elements. The set of natural numbers, for example, is the collection of all
positive integers. This set is denoted (identified) by the name Nats,

‘Nats: {1,2,3,---}.\ (A.1)

In (A.1) the left hand side is the name of the set and the right hand side is an enumeration or list of
al the elements of the set. We read (A.1) as ‘Nats is the set consisting of the numbers 1, 2, 3, and
soon. Theellipsis'---" means‘and so on’. Because Natsis an infinite set we cannot enumerate all
its elements, and so we have to use ellipsis. For afinite set, too, we may use ellipsis as a convenient
shorthand asin

A=1{1,2,3,---,100}, (A.2)

which defines A to be the set consisting of the first 100 natura numbers. Nats and A are sets of
numbers. The concept of setsis very general, as the examples below illustrate.

Sudents is the set of all students in this class, each element of which is referenced by a student’s
name:

Students = {John Brown, Jane Doe, Jie Xin Zhou, - - - }.

USCities consists of all citiesin the U.S,, referenced by name:
USCities = {Albuquerque, San Francisco, New York, - - - }.

285

286 APPENDIX A. SETSAND FUNCTIONS

BooksInLib comprises all books in the U.C. Berkeley library, referenced by a 4-tuple (first author’s
last name, book title, publisher, year of publication):

BookslnLib = {(Lee, Digital Communication, Kluwer, 1994),
(Walrand, Communication Networks, MorganKaufmann, 1996), - - - }.

BookFiles consists of all IATEX documents for this book, referenced by their file name:
BookFiles = {sets.tex, functions.tex, - - - }.

We usually use either italicized, capitalized names for sets, such as Reals and Ints, or single capital
letters, suchas A, B, X,Y.

An element of asetisalso said to be amember of the set. The number 10 isamember of the set A
defined in (A.2), but the number 110 is not a member of A. We express these two facts by the two
expressions.

10€ A, 110 ¢ A.

Thesymbol ‘€’ isread ‘isamember of ' or ‘belongsto’ and the symbol ‘¢’ isread ‘is not a member
of’ or ‘does not belong to.

When we define a set by enumerating or listing all its elements, we enclose the list in curly braces
{---}. Itisnot always necessary to give the set a name. We can instead refer to it directly by
enumerating its elements. Thus

{1,2,3,4,5}

isthe set consisting of the numbers1,2,---,5.

The order in which the elements of the set appear in thelist is not (usually) significant. When the
order is significant, the set iscalled an ordered set.

An element is either a member of aset or it isnot. It cannot be a member more than once. So for
example, {1,2,1} isnot aset.

Thus a set is defined by an unordered collection of its elements, without repetition. Two sets are
equal if and only if every element of thefirst set is also an element of the second set, and every ele-
ment of the second set isamember of thefirst set. Soif B = {1,2,3,4,5} and C' = {5, 3,4, 1,2},
then it is correct to state that

B=C. (A3

A.1.1 Assignment and assertion

Although the expressions (A.1) and (A.3) are both in the form of equations, the “=" in these two
expressions have very different meanings. Expression (A.1) (as well as (A.2)) is an assignment:
the set on the right-hand side is assigned to the name Nats on the left-hand side. Expression @.3)
is an assertion, which is an expression that can be true or false. In other words, an assertion is an
expression that has atruth value. Thus (A.3) asserts that the two sides are equal. Since thisistrue,
(A.3) isatrue assertion. But the assertion

Nats = A

A.l. SETS 287

is a false assertion. An assertion is true or false, while an assignment is a tautology (something
that is trivially true because the definition makes it so). Some notation systems make a distinction
between an assignment and an assertion by writing an assignment using the symbol “:=" instead of
“=" asin

Nats:= {1,2,3,---}.
Other notation systems use “=" for assignments and ‘==" for assertions. We will not make these

notational distinction, since it will be clear from the context whether an expression is an assignment
or an assertion.

Note that context is essential in order to disambiguate whether an expression like MyNumbers =
{1, 3,5} isan assertion or an assignment. Thus, for example, in the context,

Define the set MyNumbers by MyNumbers = {1, 3,5},

The expression is clearly an assignment, asindicated by “Definethe set - - -”. However, consider the
following context:

If we define MyNumbers by MyNumbers = {1, 3,5}, then MyNumbers = {3,5,1}.

Thefirst “=" isan assignment, but in the second is an assertion.

A.1.2 Setsof sets

Anything can be an element of a set, so of course, sets can be elements of sets. Suppose, for
example, that X isaset. Then we can construct the set of all subsets of X, which iswritten P(X)
and is called the power set of X. Noticethat since() C X, then () € P(X).

A.1.3 Variablesand predicates

We can refer to a particular element of a set by using its name, for example the element 55 in Nats,
or Berkeley in USCities. We often need to refer to ageneral element in a set. We do this by using
avariable. We usually use lower case letters for variable names, such as x, y, n,t. Thusn € Nats
refers to any natural number. Natsisthe range of the variable n. We may also use a character string
for a variable name such as city € USCities. We say that ‘n is a variable over Nats' and ‘city isa
variable over USCities'.

A variable can be assigned (or substituted by) any value in its range. Thus the assignment n = 5
assigns the value 5 to n, and city = Berkeley assigns the value Berkeley to city.

Observe again that the use of “=" in an expression like n = 5 is ambiguous, because the expression
could be an assignment or an assertion, depending on the context. Thus, for example, in the context,

1A symbol such as*=" which has more than one meaning depending on the context is said to be overloaded. C++ uses
overloaded symbols, while Java does not (Java does support overloaded methods, however). People often have difficulty
reading other peopl€e’'s code written in alanguage that permits overloading.

288 APPENDIX A. SETSAND FUNCTIONS

Probing further: Predicatesin Matlab

In Matlab, “=" is dways used as an assignment, while “==" is used to express an
assertion. Thus the Matlab program,

returns

because the expression mek+n assigns the value 7 to m However, the Matlab
program

returns
n =25, m= 6, k = 2, ans = 0

where ans = 0 signifies that the assertion m == k+n evaluates to false.

Len=5m=6k=2thenm=%k+n

thefirst three “=" are assignments, but the last is an assertion, which happens to be false.

We can use variables to form expressions such asn < 5. Now, when we assign a particular value to
n in thisexpression, the expression become an assertion that evaluates to true or false. (For instance,
n < 5 evaluates to true for n = 3 and to false for n = 6.) An expression such as z < 5 which
evaluates to true or false when we assign the variable a specific value is called a predicate (in x)?
Predicates are widely used to define new sets from old ones, as in this example:

B ={z € Nats| z <5}
which reads “ B is the set of all elements x in Nats such that (the symbol ‘|" means ‘such that') the

predicate x < 5 istrue.” More generally, we use the following prototype expression to define a new
set NewSet from an old set Set

NewSet = {z € Set | Pred(x)}. | (A.4)

2] specific value is said to satisfy a predicate if it evaluates to true, and not to satisfy the predicate if the predicate
evaluates to false.

A.l. SETS 289

In this prototype expression for defining sets, z € Set means that x is a variable over the set Set,
Pred(z) is a predicate in z, and so NewSet is the set consisting of all elements x in Set for which
Pred(z) evaluates to true.

Weillustrate the use of the prototype (A.4). In the examples below, note that the concept of predicate
isvery general. In essence, a predicate is a condition involving any attributes or properties of the
elements of Set. Consider

TallSudents = {name € Students | name is more than 6 feet tall }.

Here the predicate is “name is more than 6 feet tall.” If John Brown's height is 5 10" and Jane
Doeis6'1" tal, the predicate evaluates to true for name = Jane Doe, and to false for name = John
Brown, so Jane Doe € TallSudents and John Brown ¢ TallSudents. Consider

NorthCities = {city € USCities | city islocated north of Washington DC}.

The predicate here evaluates to true for city = New York, and to false for city = Atlanta.

The variable name “z” used in (A.4) is not significant. The sets {x € Nats| x > 5} and {n €
Nats | n > 5} are the same sets even though the variable names used in the predicates are different.
This is because the predicates ‘n > 5’ and ‘z > 5" both evaluate to true or both evaluate to false
when the same value is assigned to n and . We say that the variable name = used in A.4) isa
dummy variable since the meaning of the expression is unchanged if we substitute x with another
variable name, say y. You are already familiar with the use of dummy variables in integrals. The
two integrals below evaluate to the same number:

1 1
/ 22dr = / y2dy.
0 0

A.1.4 Quantification over sets

Consider theset A = {1,3,4}. Suppose we want to make the assertion that every element of A is
smaller than 7. We could do this by the three expressions

1<7, 3<7, 4<7,

which gets to be very clumsy if A has many more elements. So mathematicians have invented a
shorthand. Theideaisto be able to say that = < 7 for every value that the variable x takesin the set
A. The precise expression is

Vre A, x<T. (A.5)

The symbol 'V’ reads ‘for all’, so the expression reads, “for all valuesof x in A, z < 7.” The phrase
Vz € Aiscaled universal quantification. Note that in the expression (A.5), = is again a dummy
variable; the meaning of the expression is unchanged if we use another variable name. Note, also,
that (A.5) is an assertion which, in this case, evaluates to true. However, the assertion

VeeA, x>3

isfase, sincefor at least onevalue of =z € A, namely z = 1,z > 3isfase

290 APPENDIX A. SETSAND FUNCTIONS

Suppose we want to say that there is at |east one element in A that islarger than 3. We can say this
using existential quantification asin

dJre A, x>3. (A.6)

The symbol ‘3’ reads ‘there exists', so the expression (A.6) reads ‘there exists avalue of x in A,
x > 3'. Once again, any other variable name could be used in place of x, and the meaning of the
assertion is unchanged.

In general, the expression,

(A7)

is an assertion that evaluates to true if Pred(z) evaluates to true for every value of = € A, and

Vo € Set, Pred(a),

‘ Jre A, Pred(x),

(A.8)

is an assertion that evaluates to true if Pred(x) evaluates to true for at least one value of = € A.

Conversely, the assertion (A.7) evaluates to false if Pred(z) evaluates to false for at least one value
of z € A, and the assertion (A.8) evaluates to false if Pred(z) evaluates to false for every value of
x € A.

We can use these two quantifiers to define sets using the prototype new set constructor @.4). For
example
EvenNumbers = {n € Nats| 3k € Nats, n = 2k}

isthe set of all even numbers, since the predicate in the variable n,
dk € Nats, n = 2k,
evaluates to true only if n iseven.

A.15 Someuseful sets

The following sets are frequently used in this text:

Nats= {1,2,---} natural numbers
Natsy = {0,1,2,---} non-negative integers
Ints= {---,-2,-1,0,1,2,---} integers
Intsy = {0,1,2,---} non-negative integers, same as Nats
Reals= (—o0,00) real numbers
Reals; = [0,00) non-negative real numbers
Comps= {x+jy|z,y € Reals} complex numbers, j = /—1

If «, B are real numbers, then

[a,0] = {reReas|a<z<g}

(,) = {reReds|a<z<f}

(o, 3] = {reRedls|a<xz <}
(—00,00) = Reals

A.l. SETS 291

Note the meaning of the difference in notation: both end-points o and 3 are included in [«,]; we
say that [, 5] is a closed interval; neither end-point is included in (a, 3); we call this an open
interval; theinterval («, 3] is said to be half-open, half-closed. Whether an end-point isincluded in
an interval or not isindicated by the use of [,] or (,).

Other useful sets are;

Bin= {0, 1}, the binary values

Bin* = {0,1}*,set of all finite binary strings
Char = set of al alphanumeric characters
Char* = set of dl finite character strings

A.1.6 Set operations. union, inter section, complement

LetA={1,2,---,10},and B = {1,---,5}. Clearly Bisincluded in A, and A isincluded in Nats.
We express these assertions as.
B CA, ACNats,

which we read “ B is contained by or included in A” and “ A is contained by or included in Nats”
For the sets above,

Nats C Natsy C Ints C Reals C Comps.

If Aand B are sets, then A N B isthe set consisting of all elements that are in both A and B, and
A U B isthe set consisting of all elements that are either in A orin B orinboth Aand B. AN B
is called the intersection of A and B, and A U B is called the union of A and B. We can express
these definitions using variables as:

‘AﬂB:{x\xeA/\xeB}, AUB:{x\xeA\/xEB}‘

where A is the notation for the logical and and V is the symbol for the logical or. The predicate
“z € ANz € B” reads“x isamember of A and z isamember of B”; “z € AV x € B" reads
“x isamember of A or x isamember of B.” Thelogical and of two predicates is also called their
conjunction and their logical or is also called their digunction. The symbols A and Vv are called
logical connectives.

If A, X aresetsand A C X, then X \ A istheset consisting of all elementsin X that arenot in A.
X \ Aiscalled the complement of Ain X. When X isunderstood, we write A° instead of X \ A.

We gain some intuitive understanding by depicting sets and set operations using pictures. Figure
A.lillustrates union, intersection, and complement.

A.1.7 Predicate operations

Given two predicates P(x) and Q(z) we can form their conjunction P(z) A Q(x), and their dis-
junction P(z) V Q(z). These predicate operations correspond to the set operations of intersection

292 APPENDIX A. SETSAND FUNCTIONS

AUB Ac

ANB |

(@) (b)

Figure A.1: (a) Union and intersection. (b) Set complement.

and union;

{re X|P)AQ@)} = {zeX|P@)}n{recX|Q)}
{reX[P)vQ)} = {reX[P)}uU{reX|Q)}

Note the visual similarity between A and N, and between Vv and U.

The counterpart of the complement of a set is the negation of a predicate. We denote by —Pred(x)
the predicate that evaluates to false for any value of = for which Pred(x) evaluates to true, and that
evaluates to true for any value of = for which Pred(z) evaluates to false. We read ‘—Pred(z)’ as
‘not Pred(x)’ or the “negation of Pred(x).” For example,

{n € Nats|~(n<5)} ={5,6,7,---},

since ~(n < 5) evaluates to true if and only if n < 5 evaluates to false, which happens if and only
if n islarger than or equal to 5.

In general we have the following correspondence between predicate negation and set complements:

{z € X | ~Pred(z)} = {z € X | Pred(z)}. (A.9)

We can combine (A.1.7), (A.1.7), and (A.9) to obtain more complex identities. If P(z) and Q(x)
are predicates, then

{re X [~(P(@)AQ(x)} = {recX|[-P)V-Q()},
{re X [~(P(@)VQ()} = {recX][-P)A-Q)}.

A.l. SETS 293

The counterparts of these identities for set operations are; if X and Y are sets, then

(XNY) = X°uYe,
(XUY) = X°nye

These identities are called de Morgan’srules.

A.1.8 Permutationsand combinations

Given aset X with afinite number n of e ements, we sometimes wish to construct a subset with a
fixed number m < n of elements. The number of such subsetsis given by

<Z>::EﬁGﬁéEﬁ’ (A.10)

where the exclamation point denotes the factorial function. The notation(,”) isread “n choose m”.
It gives the number of combinations of m elements from the set n.

A combination is a set, so order does not matter. Sometimes, however, order matters. Suppose for
examplethat X = {a, b, c}. The number of subsets with two elementsis

3 3! 6
@>—aﬁ—§—3

These subsets are {a,b}, {a,c}, and {b,c}. Suppose instead that we wish to construct ordered
subsets of X with two elements. In other words, we wish to consider [a, b] to be distinct from [b, a]
(note the use of square brackets to avoid confusion with unordered sets). Such ordered subsets are
called permutations. The number of m-element permutations of a set of size n is given by
n!

m . (A.ll)
Notice that the number of permutations is a factor of m! larger than the number of combinations in
A.10. For example, the number of 2-element permutations of X = {a, b, ¢} issix. They are [a, b],
[a,c], [b,c], [b,a], [¢,a], and [c, b].

A.1.9 Product sets

The product X x Y of two sets X and Y consists of all pairs of elements (z,y) withz € X and
yev,ie
XxY={(z,y) |re X,ye Y}

The product of two sets may be visualized as in figure A.2. These pictures informal, to be used
only to reinforce intuition. In figure A.2(a), the set X = [0,6] is represented by a horizontal
line segment, and the set Y = [1, 8] is represented by the vertical line segment. The product set

294 APPENDIX A. SETSAND FUNCTIONS

Basics: Tuples, strings, and sequences

Given N sets, X1, Xo, -+, X, (which may beidentical), an N-tupleisan ordered
collection of one element from each set. It iswritten in parentheses, asin

(x1,22,-+,zN)

where
x; € X;foreachi € {1,2,---,N}.

The elements of an N-tuple are called its components or coordinates. Thus z; is

the i-th component or coordinate of (z, - --,zx). The order in which the compo-

nents are given is important; it is part of the definition of the N-tuple. We can use
avariableto refer to the entire N-tuple, asinz = (a1, -+, xn).

Frequently the sets from which the tuple components are drawn are al identical, as
in
($1,$2, s ,mN) S XN.

The above notation means simply that each component in the tuple is amember of
the same set X. Of course, this means that a tuple may contain identical compo-
nents. For example, if X = {a, b, ¢} then (a,a) isa2-tuple over X.

Recall that a permutation is ordered, like atuple, but like a set and unlike a tuple,
it does not allow duplicate elements. In other words, (a, a) is not a permutation of
{a,b, c}. So apermutation is not the sasme asatuple. Similarly, an ordered set does
not allow duplicate elements, and thus is not the same as a tuple.

We define the set of finite sequences over X to be
{(1‘1,"'1’]\[)’xiEX,ISiSN,NENatSo}.

where if N = 0 we cal the sequence the empty sequence. This allows us to
talk about tuples without specifying N. Finite sequences are also called strings,
although by convention, strings are written differently, omitting the parentheses and
commas, asin

X192 "ITN-.

We may even wish to allow N to beinfinite. We define the set of infinite sequence
over aset X to be
{(w1,22,) | 7, € X,i € Natso}.

A.l. SETS 295

{1,2,3,4,5,6} x [1, 8]

(6.8
<= (576)
Y=[18] [0, 6] x[1,8] Y=[18]
(0.1)
123%%56
X =1[0,6]
X={1,2,3,4,5,6}
@ (b)
{a,b,cdef}x{gh,ij}
g e e o o o o o
o DL
] e e o o o o o

a b c d e f
X={ab,c, d ef}
(©

Figure A.2: Visualization of product sets. (a) The rectangle depicts the
product set [0, 6] x [1, 8]. (b) Together, the six vertical lines depict the product
set {1,---,6} x [1,8]. (c) The array of dots depicts the set {a,b,c,d,e, f} x
{g7 h? i?.j}'

296 APPENDIX A. SETSAND FUNCTIONS

X xY =0,6] x [1, 8] isrepresented by the rectangle whose lower |eft corner is the pair (0, 1) and
upper right corner is (6, 8).

In figure A.2(b), the discrete set X = {1,2,3,4,5,6} isrepresented by six points, whileand Y =
[1, 8] isrepresented the same as before. The product set is depicted by six vertical line segments, one
for each element of X. For example, the fifth segment from the left isthe set {(5,y) | 1 <y < 8}.
One point in that set is shown.

In figure A.2(c), the product of two discrete sets is shown as an array of points. Note that unless
these are ordered sets, there is no significance to the the | eft-to-right or top-to-bottom order in which
the points are shown. In all three cases in the figure, there is no significance to the choice to depict
thefirst set in the product X x Y on the horizontal axis, and the second set on the vertical axis. We
could have done it the other way around. Although there is no significance to which is depicted on
the vertical axis and which on the horizontal, thereissignificanceto theorder of X andY in X x Y.
Theset X x YisnotthesameasY x X unless X =Y.

We generalize the product notation to three or more sets. Thusif X, Y, Z aresets, then X x Y x Z
isthe set of al triples or 3-tuples,

XxY xZ=A{(z,y,2) |[vr e X,yeY,z€ Z},

and if thereare NV sets, X7, X, - -, Xy, their product is the set consisting of N-tuples,

‘Xl ><-~xXN:{(xl,---,xN)]xieXi,izl,---,N}.‘ (A.12)

We can alternatively write (A.12) as

11 Xi. (A.13)

The large 1T operator indicates a product of its arguments.

X x X isaso written as X2. The N-fold product of the same set X is also written as XV. For
example, Reals" is the set of al N-tuples of real numbers, and Comps" is the set of all N-tuples
of complex numbers. In symbols,

Reals" = {z= (21, --,2n)|2; €Reals;i=1,---,N},
Comps” = {z=(z,---,2n) |2 € Comps,;i=1,---,N}.

Predicates on product sets

A variableover X xY isdenoted by apair (x,y), with z asthe variable over X and y asthevariable
over Y. We can use predicates in x and y to define subsets of X x Y.

Example 1.1: Theset

{(z,y) €[0,1] x [0,2] |z < y} (A.14)

A.l. SETS 297

Y=10, 2]

\‘X:y

X = [0, 1]

Figure A.3: The rectangle depicts the set [0, 1] x [0, 2], the shaded region
depicts the set given by (A.14), and the unshaded triangle depicts the set
given by (A.15).

can be depicted by the shaded region in FigureA.3. The unshaded triangle depicts the
set

{(z,y) €[0,1] x [0,2] | z > y}. (A.15)

Example 1.2: Thesolid linein Figure A.4(a) represents the set
{(z,y) € Reals’ | z +y = 1},

the shaded region depicts
{(z,y) € Reals’ | z +y > 1},

and the unshaded region (excluding the solid line) depicts
{(z,y) € Reals® | z +y < 1}.

Similarly the shaded region in Figure A.4(b) depicts the set

{(z,y) e Reals’ | —z 4y > 1}.

The overlap region in Figure A .4 (c) depicts the intersection of the two shaded regions,
and corresponds to the conjunction of two predicates:

{(z,y) €Redls’ | [x+y > 1] A[—x+y > 1]}

298 APPENDIX A. SETSAND FUNCTIONS

@ (b)

(©

Figure A.4: (a) The solid line depicts the subset of Reals? satisfying the
predicate x + y = 1. The shaded region satisfies x + y > 1. (b) The solid
line satisfies —x + y = 1, and the shaded region satisfies —z +y > 1. (c)
The overlap region satisfies [z +y > 1] A [—z +y > 1].

A.l. SETS 299

Example 1.3: Theset TallerThan consists of all pairs of students (name , name;) such
that name; istaller than name;:

TallerThan = {(name;, name,) € Sudents?® | name, is taller than name, }.
NearbyCities consists of pairs of cities that are less than 50 miles apart:
NearbyCities = {(city; , city,) € USCities’ | distance(city; , city,) < 50}.

In the predicate above, distance(city,, city,) is the distance in miles between city, and
city,.

A.1.10 Evaluating a predicate expression

We have evaluated predicate expressions several times in this appendix, each time relying on the
reader’s basic mathematical facility with expressions. We can develop systematic methods for eval-
uating expressions that rely less on intuition, and can therefore handle more complicated and intri-
cate expressions.

We have introduced the following patterns of expressions:

e A, B,Nats,---, names of sets

o A = {list of elements}

e zc A ¢ A, set membership

e A=B,BC A ,and A D B, setinclusion

e ANB,AUB, X xY, X\ A, A¢, set operations

e 1,y,- -, hames of variables

e P(x),Q(z),- -, predicatesin z

e Vz € Set, P(z) and 3z € Set, Q(x), assertions obtained by quantification

o NewSet = {z € Set | Pred(x)}, set definition

o P(z)\NQ(z), P(x) vV Q(x), ~(P(x)), predicate operations
The patterns define the rules of grammar of the notation. An expression is well-formed if it con-
forms to these patterns. For example, if P, and R are predicates, then the syntax implies that

S[[=(P(@) v Q@) A [P(x) v [R(x) A =(P(2))]]] (A.16)

isalso apredicate. Just asin the case of acomputer language, you learn the syntax of mathematical
expressions through practice?

3The syntax of alanguage is the set of rules (or patterns) whereby words can be combined to form grammatical or
well-formed sentences. Thus the syntax of the ‘C’ language is the set of rules that a sequence of characters (the code)
must obey to be aC program. A C compiler checks whether the code conforms to the syntax. Of course, even if the code
obeys the syntax, it may not be correct; i.e. it may not execute the correct computation.

300 APPENDIX A. SETSAND FUNCTIONS

A\
N
V V
N
- Q(zr) P(x) A = R(z) A=(P(x
Pz) R(x) 7 — (P(z))
P(x)

Figure A.5: Parse tree for the expression (A.16).

Parsing

To show that (A.16) is indeed a well-formed predicate, we must show that it can be constructed
using the syntax. We do this by parsing the expression (A.16) with the help of matching brackets
and parentheses. Parsing the expression will also enable usto evauate it in a systematic way.

The result is the parse tree shown in figureA.5. The leaves of this tree (the bottom-most nodes) are
labeled by the elementary predicates P, , R, and the other nodes of the tree are labeled by one of
the predicate operations A, Vv, —. Each of the intermediate nodes corresponds to a sub-predicate of
(A.16). Two such sub-predicates are shown in the figure. The last leaf on theright islabeled P(x).
Its parent node is labeled —, and so that parent node corresponds to the sub-predicate —(P(z)). Its
parent node is labeled A, and it has another child node labeled R(x), so this node corresponds to
the sub-predicate R(x) vV —(P(z)).

If we go up the tree in this way, we can see that the top of the tree (the root node) indeed corresponds
to the predicate (A.16). Since at each intermediate node, the sub-predicate is constructed using the
syntax, the root node is a well-formed predicate.

Evaluating

Suppose we know whether the predicates P (), Q(x), R(x) evaluate to true or false for some value
of z. Then we can use the parse tree to figure out whether the predicate (A.16) evaluates to true
or false. To do this, we begin with the known truth values at the leaves of the parse tree, use the
meaning of the predicate operations to figure out the truth val ues of the sub-predicates corresponding
to the parents of the leaf nodes, and then the parents of those nodes, and work our way up the tree
to figure out the truth value of the predicate (A.16) at the root node. In figure A.6 the parse tree is
annotated with the truth values of each of the nodes. Since the root node is annotated ‘false, we

A.l. SETS 301

- — —False
AN ——=True
/ \
VvV — —True VvV — —True
-~ — —False True True N — —False
| N
True True - — —False
True

Figure A.6: Parse tree for the expression (A.16) annotated with the truth
values of each of the nodes.

conclude that (A.16) evaluates to false.

Truth tables

The way in which the predicate operations transform the truth valuesis given in the following truth
table:

P(z) | Q(z) || ~P(z) | P(z) AQ(z) | P(z)V Q(z)
True | True False True True
True | False False False True
False | True True False True
False | False True False False

Consider a particular row of this table, say the first row. The first two entries specify that P(x) is
true and Q(x) istrue. The remaining three entries give the corresponding truth values for —=P(z),
P(z) A Q(x) and P(z) V Q(z), namely, —P(x) isfase, P(z) A Q(x) istrue, and P(x) V Q(x)
is true. The four rows correspond to the four possible truth value assignments of P(x) and Q(x).
Thistruth table can be used repeatedly to evaluate any well-formed expression given the truth value
of P(x) and Q(z).

Thus, given the truth values of predicates B (z), ..., P,(x), the truth value of any well-formed
expression involving these predicates can be obtained by a computer algorithm that constructs the
parse tree and uses the truth table above. Such algorithms are used to evaluate logic circuits.

302 APPENDIX A. SETSAND FUNCTIONS
A.2 Functions

In the notation
f:X—-Y, (A.17)

X and Y are sets, and f isthe name of afunction. The function is an assignment rule that assigns
avalueinY to each element in X. If the element in X isx, then the valueis written f(x).

Weread (A.17) as* f is (the name of) a function from X into (or to) Y.” We also say that f maps
X intoY. Theset X iscalled the domain of f, written X = domain(f), the set Y is called the
range of f, written Y = range(f).* When the domain and range are understood from the context,
wewrite“ f” by itself to represent the function or the map. If z isavariable over X, wealsosay “ f
isafunction of z.”

Example 1.4: Recall the set Sudents of all the students in this class. Each element of
Sudents is represented by a student’s name,

Students = {John Brown, Jane Doe, - - - }.

We assign to each name in Students the student’s marks in the final examination, a
number between 0 and 100. This name-to-marks assignment is an example of a func-
tion. Just as we give names to sets (e.g. Students), we give names to functions. In this
example the function might be named Score. When we evaluate the function Score at
any name, we get the marks assigned to that name. We write this as

Score(John Brown) = 90, Score(Jane Doe) = 91.2, - --

Figure A.7 illustrates the function Score. Three things are involved in defining Score:
the set Students, the set [0, 100] of possible marks, and the assignment of marks to each
name. In the figure this assignment is depicted by the arrows. the tail of the arrow
points to a name and the head of the arrow points to the marks assigned to that name.
We denote these three things by

Score: Sudents — [0, 100]

which we read as “ Score is a function from Students into [0, 100].” The domain of the
function Score is Sudents, and the range of Scoreis [0, 100].

It is easy to imagine other functions with the same domain Students. For example, Height assigns
to each student his or her height measured in cm, SSN assigns students their social security number,
and Address assigns students their address. The range of these functions is different. The range of
Height might be defined to be [0, 200] (200 cm is about 8 feet). Since a social security number is
a 9-digit number, we can take {0, 1, - - -, 9}° to be the range of SSN. And we can take the range of
Address to be Char'%, assuming that an address can be expressed as a string of 100 characters,
including blank spaces.

“In some mathematics texts, the set Y which we call the range is called the codomain, and range(f) is defined to be
the set of al valuesthat f takes, i.e., range(f) = {f(z) | z € X }. However, we will not use this terminology.

A.2. FUNCTIONS 303

JohnBrown

Jane Doe d

[0, 100]

Students

Figure A.7: lllustration of Score.

We usually use lower case letters for function names, such as f, g, h, or more descriptive names
such as Score, Woice, Video, SquareWave, AMSgnal.

Avoid abad habit: Itisimportant to distinguish between afunction f and itsvalue
f(x) at aparticular point z € domain(f). The function f is arule that assigns a
value in range(f) to each = € domain(f), whereas f(z) is apoint or element in
range(f). Unfortunately, too many books encourage the bad habit by using * f (z)’
asashorthand for * f isafunction of z." If you keep the distinction between f and
f(x), it will be easier to avoid confusion when we study systems.

A.2.1 Defining functions

To define a function, you must give the domain, the range, and the rule that produces an element
in the range given an element in the domain. There are many ways to do this, as explored in much
more depth in chapter 2. Here we mention only two. The first is enumeration. That is, in tabular
form or some other form, each possible value in the domain is associated with avalue in the range.
This method would be appropriate for the Score function, for example. Alternatively, functions can
be mathematically defined by the prototype: define f : X — Y,

Vee X, f(r)=expressoninz.

The ‘expression in ' may be specified by an algebraic expression, by giving the graph of f, by a
table, or by a procedure.

304 APPENDIX A. SETSAND FUNCTIONS

A.2.2 Tuplesand sequences asfunctions

An N-tuple z = (z1,---,zn) € X" can be viewed as afunction

z:{l,---,N} - X.

For each integer in {1,---, N}, it assigns avalue in X. An infinite sequence y over the set Y can
also be viewed as afunction

y:Nats — Y
or

y:Natsy — Y,

depending on whether you wish to begin indexing the sequence at zero or one (unfortunately, both
conventions are widely used). Thisview of sequences as functionsisin fact our model for discrete-
time signals and event traces, as developed in chapter 1.

A.2.3 Function properties

A function f: X — Y isone-to-oneif
Y a1 EXandVZ'QEX, 1 7&$2:>f(x1)7£f($2)

Here the logical symbol ‘=" means ‘implies’ so the expression isread: if x;, xo are two different
elementsin X, then f(xy), f(x2) are different.

Example 1.5: The function Cube: Reals — Reals given by
Vz Cube(z) = 2?,

isone-to-one, because if z; # o, then 23 # x3. But Square is not one-to-one because,
for example, Square(1) = Square(—1).

A function f: X — Y isonto if
VyeY, 3z e X, suchthat f(z) =y.

The symbol ‘3" isthe existential quantifier, which means ‘there exists' or ‘for some’. So the expres-
sion above reads: ‘For each y in Y, there exists z in X such that f(z) = y.

Accordingly, f isonto if for every y initsrange thereis some z in its domain such that y = f(x).

Example 1.6: The function Cube: Reals — Reals is one-to-one and onto, while
Sguare: Reals — Realsis not onto. However, Square: Reals — Reals, is onto.

A.2. FUNCTIONS 305

Probing further: Infinite sets

Thesizeof aset A, denoted | A|, isthe number of elementsit contains. By counting,
we immediately know that {1,2,3,4} and {a,b,c,d} have the same number of
elements, whereas {1, 2,3} has fewer elements. But we cannot count infinite sets.
It ismore difficult to compare the number of elementsin the following infinite sets:

A=Nats={1,2,3,4,---}, B=1{2,3,4,5---}, C = [0,1].

At first, we might say that A has one more element than B, since A includes B but
has one additional element, 1 € A. In fact, these two sets have the same size.

The cardinality of a set is the number of elements in the set, but generalized to
handle infinite sets. Comparing the cardinality of two sets is done by matching
elements, using one-to-one functions. Consider two sets A and B, finite or infinite.
We say that A has a smaller cardinality than B, written |A| < |Bj, if there exists
a one-to-one function mapping A into B. We say that A and B have the same
cardinality, written |A| = | B|, if |A| < |B|and |B| < |A|.

The cardinality of theinfinite set A = Natsisdenoted ¥, read “aeph zero” (aleph
isthefirst letter of the Hebrew alphabet). It is quite easy to prove using the defini-
tion of cardinality that n < ¥, for any finite number n.

We can now show that the cardinality of B isalso¥y. Thereisaone-to-one function
f: A — B, namely
VneA, f(n)=n+1,

so that |A| < |BjJ, and there is aone-to-one function g: B — A, namely
VneB, gn)=n-—1,

so that |B| < |A|. A similar argument can be used to show that the set of even
numbers and the set of odd numbers also have cardinality ¥.

It is more difficult to show that the cardinality of Natsx Natsisalso &y. To seethis,
we can define a one-to-one function h: Nats’ — Nats as follows (see figure A.8).

h((1,1)) =1, h((2,1)) =2, h((2,2)) =3, h((1,2)) =4, h((1,3)) =5, ---

Observe that since arational number m /n can be identified with the pair (m,n) €
Nats?, the argument above shows that the cardinality of the set of all rational num-
bersisalso Ny.

306 APPENDIX A. SETSAND FUNCTIONS

Probing further: Even bigger sets

We can show that the cardinality of [0, 1] is strictly larger than that of Nats; i.e.
|[0,1]] > |Nats| Since the function f: Nats — [0, 1] defined by

VneNats, f(n)=1/n

isone-to-one, we have |[Nats| < |[0, 1]|. However, we can show that thereisno one-
to-one function in the other direction. If there were such afunction g: [0, 1] — Nats,
then it would be possible to enumerate all the elements of [0, 1] in an ordered list,

0,1] = {a',2%,4%,-- -}, (A.18)

(The superscript here isnot raising to a power, but just indexing.) We can show that
this is not possible. If we express each element of [0, 1] by its decimal expansion
(ignoring the element 1.0), thislist looks like

x! Ow%x%xé e
D Ox%x%x% e
B = Oxi’x%x% e
" = 0xfzyzy---

Construct any number y € [0, 1] with the decimal expansion

y = 0.y192y3 -

such that for each i, y; # z where ¢ is the i-th term in the decimal expansion of
x%. Clearly such a number exists and isin [0, 1]. But then for every i, y # 2%, SO
that iy cannot bein thelist {z!, 22, 23, - --}. Thus, thelist (A.18) is not completein
that it does not include all the elements of [0, 1].

The cardinality of [0, 1] is denoted ¥, and is strictly greater than ¥y. In this sense
we can say that the continuum [0, 1] has more elements than the denumerable set
Nats, even though both sets have infinite size.

The obvious question is whether there are cardinalities larger than ¥,. The answer
isyes; in fact, there are sets of ever higher cardinality,

Ng < Ny < RNg,---

and sets with cardinality larger than all of these!

A.3. SUMMARY 307

& [] [] ([] []

(5.1) p——————8
42 43 (49 ;

41) ¢——o—o—9

23 (33 (4.3

13 ¢ o
22) |62 | @2
12 (22) @2 .() .
® o o —

1y 21y G @G

Figure A.8: A correspondence between Nats? and Nats.

A.3 Summary

Sets are mathematical objects representing collections of elements. A variable is a representative
for an element of a set. A predicate over a set is an expression involving a variable that evaluates
to true or false when the variable is assigned a particular element of the set. Predicates are used
to construct new sets from existing sets. If the variable in a predicate is quantified, the expression
becomes an assertion.

Sets can be combined using the operations of union, intersection and complement. The corre-
sponding operations on predicates are disjunction, conjunction and negation. New sets can also be
obtained by the product of two sets.

There are precise rules that must be followed in using these operations. The collection of these rules
isthe syntax of setsand predicates. By parsing acomplex expression, we can determine whether itis
well-formed. The truth value of a predicate constructed from elementary predicates using predicate
operations can be calculated using the parse tree and the truth table.

Functions are mathematical objects representing a relationship between two sets, the domain and
the range of the function. We have introduced the following patterns of expressions for functions

e f,g,h,Score, - - -, names of functions,

e f: X =Y, X =domain(f),Y = range(f), afunctionfrom X toY,

A function f : X — Y assignsto eachvaluez € X avalue f(z) € Y.

308 APPENDIX A. SETSAND FUNCTIONS
Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some thought,
requires some conceptualization. Problems labeled E are usually mechanical, those labeled T re-
quire aplan of attack, those labeled C usually have more than one defensible answer.

1. E Inthe spirit of figure A.2, give a picture of the following sets.

@ {1,2,3},

(b) [0,1] > {0,1},
© [0,1] x [a,b].

(@ {1,2,3} x {a,b},
(© {a,b} x [0,1].

2. E How many elements are there in the sets (a) {1,---,6}, (b) {—2,—1,---,10}, and (c)
{0,1,2} x {2,3}?

3. T Determine which of the following expressions is true and which is false:

(@ YneNats, n>1,
(b) In € Nats, n < 10,
© IfA={1,2,3} and B = {2,3,4) ,thenVz € A, ¥y € B, z <y,
(d) If A={1,2,3}and B =1{2,3,4} ,thenVx € A,Jy € B, =z <y,
© If A={1,2,3} and B = {2,3,4) ,thenJz € A, Vy € B, z <y.
4. T Inthe following figure, X = {(z,y) | 2> + y* = 1} is depicted as a 2-dimensiona circle

and Z = [0,2] is shown as a 1-dimensional line segment. Explain why it is reasonable to
show the product set as a 3-dimensional cylinder.

5. E Inthe spirit of figureA.2, give apicture for the product set { M, T'u, W, Th, F'} x[8.00, 17.00]
and indicate on your drawing the lecture hours for this class.

6. E Inthe spirit of figureA.2, give apicturefor theset A = {(z,y) |z € [1,2],y € [1,2]} and
theset B = {(z,z) | z € [1,2]}. Explain why the two sets are different.

A3

10.

11.

12.

13.

SUMMARY 309

. C Giveaprecise expression for the predicate below so that Triangle isindeed atriangle:

Triangle = {(z,y) € Reals’ | Pred(z, y)}.

There are many ways of writing this predicate. One way is to express Pred(z,y) as the
conjunction of three linear inequality predicates. Hint: We used the conjunction of two linear
inequality predicatesin figureA.4.

. T If X hasm elementsand Y hasn elements, how many elements aretherein X x Y? If X;
has m; elements, fori = 1,-- -, I, for some constant 7. How many elements are there in
i=1

HXZ‘:X1X"'><X[?
i=1

. T How many different 10-letter strings are there if each letter is drawn from the set Alphabet

consisting of the 26 lower case letters of the aphabet? How many such strings are there with
exactly one occurrence of the letter a?

T Recadll that a set cannot contain duplicate elements. Now suppose X contains 10 elements.

e How many two-element combinations of elements from X are there?
e How many two-element permutations are there?
C Construct predicates for usein the prototype (A.4) to define the following sets. Define them
in terms of examples of setsintroduced in this chapter.
() Theset of U.S. cities with a population exceeding one million.
(b) The male students in the class.
(c) Theold booksin the library.
T Which of the following expressions is well formed? For those that are well formed, state
whether they are assertions. For those that are assertions, evaluate the assertion to true or
false. For those that are not assertions, find an equivalent simpler expression.
@ 2e{1,3,4},
(b) 3 C{1,3,4},
(© {3} c{1,2,3},
(d) 2U{1,3,4},
(e) {2} U{1,3,4},
(f) [2.3,3.4] = {zr € Reals| 2.3 <z < 3.4},
(9) {z €Redls|z >3 Az <4},
(h) [1,2]N[3,4] = 0.

E Define the following setsin terms of the sets named in sectionA.1.5

(@) Theset of all 10-letter passwords.

310

14.
15.

16.

17.

APPENDIX A. SETSAND FUNCTIONS

(b) Theset of al 5 x 6 matrices of real numbers.
(c) The set of al complex numbers with magnitude at most 1.
(d) The set of all 2-dimensional vectors with magnitude exactly 1.

E Enumerate the set of all subsets (including the empty set) of {a, b, c}.

T Suppose a set X hasn elements. Let P(X) be the power set of X. How many elements
aretherein P(X)?

T Use Matlab to depict the following sets using the plot command:
(@ {(t,z) € Reals’ |z =sin(t), and t € {0, 3527, 252, -, 2027 }},
(b) {(y,z) EReals’ [y =e®, andz € {-1,-1+ &, -1+ &, ,1}},
(C) {(yax) € Rea|32|y:€_$7 andzx € {_17_1+2_107_1+%771}}

T Determine which of the following functions is onto, which is one-to-one, and which is
neither, and give a short explanation for your answer.

(a) License: CalVehicles — Charx* given by V vehicle € Cal\ehicles,
License(vehicle) isthe Californialicense number of the vehicle

(b) f:Reals— [—2,2], givenby V x € Reals, f(x) = 2sin(z)

() f:Reals — Reals, givenby V x € Reals, f(z) = 2sin(z)

(d) conj: Comps — Comps, the complex conjugate function

(6) f:Comps — Reals®, givenby V z € Comps, f(z) = (Re(z), Im(z)), where Re(z) is
thereal part of z and I'm(z) istheimaginary part of z.

(f) M:Reals’ — Reals®, V (z1, 1) € Reals?,

M(z1,22) = (y1,92)

=]

(9) Zero: Reals! — Reals!,V x € Reals?, Zero(z) = (0,0,0,0)

where

Appendix B

Complex Numbers

Complex numbers are used extensively in the modeling of signals and systems. There are two
fundamental reasons for this. The first reason is that complex numbers provide a compact and
elegant way to talk simultaneously about the phase and amplitude of sinusoidal signals. Complex
numbers are therefore heavily used in Fourier analysis, which represents arbitrary signals in terms
of sinusoidal signals. The second reason is that alarge class of systems, called linear time-invariant
(LTI) systems, treat signals that can be described as complex exponential functions in an especially
simple way. They simply scale the signals.

These uses of complex numbers are developed in detail in the main body of this text. This appendix
summarizes essential properties of complex numbers themselves. We review complex number arith-
metic, how to manipulate complex exponentials, Euler’s formula, the polar coordinate representa-
tion of complex numbers, and the phasor representation of sinewaves.

B.1 Imaginary numbers

The quadratic eguation,
22 —1=0,

has two solutions, = = +1 and x = —1. These solutions are said to be roots of the polynomial
22 — 1. Thus, this polynomial has two roots, +1 and —1.

Consider an n-th degree polynomial of the form
"+ a4 a1+ oay. (B.1)
The roots of this polynomial are defined to be the solutions to the polynomial egquation
" +a " 4+ 4 ap_1z+a, =0. (B.2)
The roots of a polynomial are related to a particularly useful factorization into first-degree polyno-
mials. For example, we can factor the polynomial 22 — 1 as
2 —1=(zx—1)(z+1).

311

312 APPENDIX B. COMPLEX NUMBERS

Notice therole of theroots, +1 and —1. In generd, if B.1) hasrootsry, - - - , ,,, then we can factor
the polynomial asfollows

" a " Fap it a, = (@)@ — 1) (T —). (B.3)
Itiseasy to seethat if z = r; forany i € {1,---n}, then the polynomial evaluates to zero, so (B.2)
is satisfied.
Aninteresting question that arises is whether B.2) always has a solution for . In other words, can
we aways find roots for a polynomial ?

The equation
2 4+1=0 (B.4)

has no solution for z in the set of real numbers. Thus, it would appear that not all polynomials have
roots. However, a surprisingly simple and clever mathematical device changes the picture dramat-
ically. With the introduction of imaginary numbers, mathematicians ensure that all polynomials
have roots. Moreover, they ensure that any polynomial of degree n has exactly n factorsasin B.3).
Then valuesry, - - -, r, (Some of which may be repeated) are the roots of the polynomial.

If we try by simple algebra to solve (B.4) we discover that we need to find « such that
z? = —1.

This suggests that
z=+v/—1.

But —1 does not normally have a square root.
The clever device isto define an imaginary number, usually written ¢ or j, that is equa to/—1. By
definition,!
X1 =vV—-1x+v—-1=-1.
This (imaginary) number, thus, is a solution of the equation 22 + 1 = 0.

For any real number y, yi isan imaginary number. Thus, we can define the set of imaginary numbers
as

ImaginaryNumbers = {yi | y € Reals, and: =/—1} (B.5)

It is a profound result that this simple device is al we need to guarantee that every polynomial
equation has a solution, and that every polynomial of degree n can be factored into n polynomials
of degree one, asin (B.3).

B.2 Arithmetic of imaginary numbers

The sum of 7 and 7 is written 2;. Sums and differences of imaginary numbers simplify like real
numbers:
3+ 20 = 5e, 31 — 41 = —1.

*Here, the operator x is ordinary multiplication, not products of sets.

B.3. COMPLEX NUMBERS 313

If y14 and y»i are two imaginary numbers, then

yii + y2i = (y1 + y2)i, y1i — yai = (y1 — y2)i- | (B.6)
The product of areal number z and an imaginary number yi is

T XYl =Yyi X T = TY.

To take the product of two imaginary numbers, we must remember that 7 = —1, and so for any two
imaginary numbers, 3,4 and y-7, we have

Y11 X Y2i = —Y1 X Y. (B.7)

Theresult isareal number. We can userule (B.7) repeatedly to multiply as many imaginary numbers
aswe wish. For example,

ixi=—1,i =ixiZ=—q i*=1.

The ratio of two imaginary numbers ;¢ and y»i isareal number
vty

y2i Y2
B.3 Complex numbers

The sum of areal number x and an imaginary number yi is called a complex number. This sum
does not simplify as do the sums of two reals numbers or two imaginary numbers, and it is written
aszx + yi, or equivaently, x + iy or x + jy.

Examples of complex numbers are
241, —3—2i, -7+ V2.
In general acomplex number z is of the form
z=x4yi=1x+yv/—1,

where x, y are real numbers. Thereal part of z, written Re{z}, is . The imaginary part of z,
written Im{z}, is y. Notice that, confusingly, the imaginary part is a real number. The imaginary
part times ¢ is an imaginary number. So

|2 =Re{z} + Im{z}i. |
The set of complex numbers, therefore, is defined by

Comps = {z + yi | z € Reals,y € Reals, andi = /—1}. (B.8)

Every real number x isin Comps, because = = = + 0i; and every imaginary number yi isin Comps,
because yi = 0 + yi.

Two complex numbers z; = x; + y17 and 2o = x5 + y2i are equal if and only if their real parts are
equal and their imaginary partsareequal, i.e. z = z, if and only if

Re{Zl} = RE{ZQ}, and |m{21} = |m{2’2}.

314 APPENDIX B. COMPLEX NUMBERS

B.4 Arithmetic of complex numbers

In order to add two complex numbers, we separately add their real and imaginary parts,
(z1+y18) + (w2 + y2i) = (21 + 22) + (1 + y2)i-
The complex conjugate of x + yi is defined to be x — yi. The complex conjugate of a complex
number z iswritten z*. Notice that
z+ 2" =2Re{z}, z — 2" =2Im{z}i.
Hence, the real and imaginary parts can be obtained using the complex conjugate,

%@}:i%imem@}:Z_z.

]

The product of two complex numbers works as expected if you remember that 7 = —1. So, for
example,
(1+2i)(2+3i) =2+ 3i +4i+ 6> =2+7i —6=—4+Ti,

which seems strange, but follows mechanically from #Z = —1. In general,

‘ (z1 4+ y19) (22 + y2i) = (122 — Y1y2) + (T1Y2 + T2y1)i ‘ (B.9)

If we multiply z = = + yi by its complex conjugate z* we get
22* = (x +yi)(x — yi) = 22 + ¢,

which is a positive real number. Its positive square root is called the modulus or magnitude of z,

and iswritten |z|,
|z] = Vzzr = /22 + 2.

How to calculate the ratio of two complex numbersisless obvious, but it isequally mechanical. We
convert the denominator into areal number by multiplying both numerator and denominator by the
complex conjugate of the denominator,

243 _ 243 1-2
1426 1+2 1—2
 (246)+ (—4+3)i
N 1+4
= 3——1.

The general formulais

1+ ylz. _ xwg + y;yz I _951?;2 + 9;23/12-] (B.10)
T + Yoi 3+ Y3 Ty T Y2

In practice it is easier to calculate the ratio as in the example, rather than memorizing formula
(B.10).

B.5. EXPONENTIALS 315
B.5 Exponentials

Certain functions of real numbers, like the exponentia function, are defined by an infinite series.
The exponential of areal number z, written ¢* or exp(z), is

Ooxk 2 1‘3
e$:Z——1+x+—+—+

= k! 3!

We aso recall the infinite series expansion for cos and sin:

62 6t
COS(H) = I—E—i—z—

3 5
sin(0) = 9_%+‘9__...

The exponential of a complex number z iswritten ¢ or exp(z), and is defined in the same way as
the exponential of area number,

x _k 2 23

z
62—2k1—1+z+—+§+ (B.11)

Note that e” = 1, as expected.

The exponential of an imaginary number i6 is very interesting,

(i0)* | (i0)°

9 _ -
e = 1 (i) + o g
92 o 4 63 6°
= Mgty il gy

= cos(#) + isin(0).

Thisidentity isknown as Euler’s formula:

e = cos(f) + isin(0). (B.12)

Euler's formulais used heavily in thistext in the analysis of linear time invariant systems. It allows
sinusoidal functions to be given as sums or differences of exponential functions,

cos(0) = (e + e719)/2 (B.13)

and

sin(f) = (e — e /(2). (B.14)

This proves useful because exponentia functions turn out to be simpler mathematically (despite
being complex valued) than sinusoidal functions.

An important property of the exponential function isthe product formula:

e?11T%2 = 1?2, (B.15)

316 APPENDIX B. COMPLEX NUMBERS

We can obtain many trigonometric identities by combining B.12) and (B.15). For example, since

010 — =10 _ 0 _ 1

and -
e = [cos(0) + isin(0)][cos(8) — isin(f)] = cos?() + sin?(8),

so we have the identity

cos?(0) + sin?(0) = 1.

Hereis another example. Using
eilatB) — eiaelﬂ, (B.16)

we get

cos(a+) +isin(a+) = [cos(a) + isin(ia)][cos(B) + isin(F)]
= [cos(a) cos(B) — sin(«) sin(3)]
+i[sin(a) cos(B) + cos(a) sin(3)].

Since the real part of the left side must equal the real part of the right side, we get the identity,

[cos(a +3) = cos(a) cos() — sin(a) sin(3).

Since the imaginary part of the left side must equal the imaginary part of the right side, we get the
identity,

‘ sin(a + 3) = sin(a) cos() + cos(a) sin(f3). ‘

It is much easier to remember (B.16) than to remember these identities.

B.6 Polar coordinates

The representation of a complex number as a sum of areal and an imaginary number, z = = + iy,
iscaled its Cartesian representation.

Recall from trigonometry that if «, vy, r are real numbers and 2 = 2 + 32, then there is a unique
number 6 with 0 < § < 27 such that
X . Yy
9 = — 9 = —.
cos(0) o sin (@) "

That number is
0 = cos (z/r) = sin"(y/r) = tan" ' (y/x).

We can therefore express any complex number z = x + iy as

= —l—ii) = |z|(cos O +isin @) = |z|e'?,

2zl

z=2((

B.6. POLAR COORDINATES 317

Figure B.1: A complex number z is represented in Cartesian coordinates
as z = x + iy and in polar coordinates as z = re’. The z-axis is called the
real axis, the y axis is called the imaginary axis. The angle 6 in radians is
measured counter-clockwise from the real axis.

where = tan~!(y/x). Theangle or argument § ismeasured in radians, and it iswritten asarg(z)
or /z. Sowe havethe polar representation of any complex number z as

2z =x+ iy = re?. (B.17)

The two representations are related by
r=|z| = /22 + 42

6 = arg(z) = tan"!(y/z).

and

The values x and y are caled the Cartesian coordinates of z, while r and 6 are its polar coor di-
nates. Note that » isreal and r > 0.

Figure B.1 depicts the Cartesian and polar representations. Note that for any integer K,

relQKTH0) _ .10

Thisis because

rei@ET+0) _ . i2Kn if
and

K™ = cos(2K) +isin(2Kn) = 1.
Thus, the polar coordinates (r,#) and (r, 6 + 2K) for any integer K represent the same complex
number. Thus, the polar representation is not unique; by convention, a unique polar representation

can be obtained by requiring that the angle given by avalue of 6 satisfying 0 < § < 27 or —7 <
0 <, but we will rarely enforce this constraint.

Example 2.1: The polar representation of the number 1 is1 = 1¢°. Notice that it is
also true that 1 = 1¢%2™, because the sine and cosine are periodic with period 2. The
polar representation of the number —1is —1 = 1¢™. Again, itistruethat —1 = 17,
or, infact, —1 = 1527 for any integer K.

318 APPENDIX B. COMPLEX NUMBERS

Figure B.2: The 5th roots of unity.

Products of complex numbers represented in polar coordinates are easy to compute. If 7 = \ri\ei‘)i,

then

2129 = ’?”1”7“2‘€i(91+62).

Thus the magnitude of a product is a product of the magnitudes, and the angle of a product is the
sum of the angles,

l[z120] = |2]|2], L(z120) = £(21) + L(20).]

Example 2.2: We can use the polar representation to find the n distinct roots of the
equation 2" = 1. Write z = re’?, and 1 = 1e?*7, so

. rneznO _ 1612k7r

which givesr = 1 and 0 = 2kn/n, k = 0,1,---,n — 1. These are called the n roots
of unity. Figure B.2 shows the 5 roots of unity.

9

Whereas it is easy to solve the polynomial equation 7* = 1, solving ageneral polynomial equation
is difficult.

Theorem The polynomial equation

Mta M a1zt a, = 0,

where ay, - - -, a, are complex constants, has exactly n factors of the form (z — o),
where a1, - - - v, @re called the n roots. In other words, we can always find the factor-
ization,

n

M ta " a1z 4 a, = H(z—ak) .
k=1

B.6. POLAR COORDINATES 319

Some of the roots may be identical.

Note that although this theorem ensures the existence of this factorization, it does not suggest away
to find the roots. Indeed, finding the roots can be difficult. Fortunately, software for finding rootsis
readily available, for example using the Matlab r oot s function.

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some thought,
requires some conceptualization. Problems labeled E are usually mechanical, those labeled T re-
quire aplan of attack, those labeled C usually have more than one defensible answer.

1. E Simplify the following expressions:

@
3441 » 3+ 67
5—6i 4—5i
(b)
€2+7ri.

2. E Expressthefollowing in polar coordinates:

1 1
2% V4% —— % %
hEt Ay Tl g T

w

. E Depict the following numbers graphically asin figureB.1:

il, =2, -3 —1i, —1 —i.

4. E Find 6 so that
Re{(1+ 1)’} = —1.

5. E Expressthe six distinct roots of unity, i.e. the six solutions to
=1
in Cartesian and polar coordinates.
6. T Expressthesix rootsof —1, i.e. the six solutions to
20 =1

in Cartesian and polar coordinates. Depict these roots asin FigureB.2.

320

10.

11.

APPENDIX B. COMPLEX NUMBERS

T Figure out " for al positive and negative integers n. (For a negative integer n, 7" =

1/zm)

T Factor the polynomial 2° + 2 as

5
P +2= H(Z—Oék:),
k=1

expressing the oy, in polar coordinates.

C How would you define v/1+14 ? More generally, how would you define /= for any
complex number z?

T The logarithm of a complex number z is written log z or log(z) . It can be defined as an
infinite series, or as the inverse of the exponentid, i.e. definelog z = w, if €Y = z. Using the
latter definition, find the logarithm of the following complex numbers:

1, 1,4, —i, 1+

More generdly, if z # 0 isexpressed in polar coordinates, what islog z? For which complex
numbers z islog z not defined?

E Use Matlab to answer the following questions. Let zy = 2+37 and z, = 4—25. Hint: Con-
sult Matlab helponi , j , exp, real ,i mag, abs, angl e, conj , and conpl ex. Looking
up “complex” in the help desk may aso be helpful.

(8) What is z; + z0? What are the real and imaginary parts of the sum?

(b) Expressthe sumin polar coordinates.

(c) Draw by hand two rays in the complex plane, one from the origin to z and the other
from the origin to z;. Now draw z; + z3 and z; — zo on the same plane. Explain how
you might systematically construct the sum and difference rays.

(d) Draw two rays in the complex planeto z = —2 — 35 and z4 = 3 — 35. Now draw
zg X z4 and z3/z4.

(6) Consider z; = 2¢7™/6 and 25 = 2. Express z in polar coordinates. What is 2 25?
(f) Draw theray to zy = 1+ 15. Now draw raysto z, = zge’"/4forn =1,2,3,.... How
many distinct z,, are there?

(g) Find all the solutions of the equation 2* = 1. Hint: Express z in polar coordinates,
z = rel? and solve for r, 6.

12. E This problem explores how complex signals may be visualized and analyzed.

(d) Use Matlab to plot the complex exponential function asfollows:

pl ot (exp((-2+10j)*[0:0.01:1]))

B.6. POLAR COORDINATES 321

Theresult isa spiraing curve corresponding to thesignal f : [0, 1] — Comps where
Vi e [0,1] f(t) = el72H100)

. In the plot window, under the Tools menu item, use ‘Axes properties’ to turn on the
grid. Print the plot and on it mark the points for which the function is purely imaginary.
Isit evident what values of ¢ yield purely imaginary f(¢)?

(b) Find analytically the values of ¢ that result in purely imaginary and purely rea f(¢).

(c) Construct four plots, where the horizontal axis represents ¢ and the vertical axis repre-
sents the real and imaginary parts of f(t¢), and the magnitude and angle of f(¢). Give
these as four subplots.

(d) Givethe mathematical expressions for the four functions plotted above in part (c).

13. T Euler'sformulais; for any real number 6,

e/? = cos + jsin 6,

and the product formulais: for any complex numbers z , zo,

eF1 a2 — oZ1 %2

The following problems show that these two formulas can be combined to obtain many useful
identities.
(8) Express sin(26) and cos(26) as sums and products of sin# and cosf. Hint: Write
120 = ¢1%9¢39 (by the product formula) and then use Euler’s formula.
(b) Expresssin(36) and cos(36) also as sums and products of sin § and cos 6.

(c) Thesum of severa sinewaves of the same frequency w but different phasesisasinewave
of the same frequency, i.e. given A, ¢, k= 1,...,n, wecanfind A, ¢ so that

Acos(wt + ¢) = 2": Ay, cos(wt + o)
k=1

Express A, ¢ intermsof { Ay, ¢}

322 APPENDIX B. COMPLEX NUMBERS

Appendix C

L aboratory Exercises

This appendix contains laboratory exercises based on Matlab and Simulink. The purpose of these
exercises is to help reconcile the declarative (what is) and imperative (how to) points of view on
signals and systems. The mathematical treatment that dominates in the main body of this text is
declarative, in that it asserts properties of signals and studies the relationships between signals that
are implied by systems. This appendix focuses on an imperative style, where signals and systems
are constructed proceduraly.

Matlab and Simulink, distributed by The MathWorks, Inc., are chosen asthe basis for these exercises
because they are widely used by practitioners in the field, and because they are capable of realizing
interesting systems. Why use both Matlab and Simulink? Although they are integrated into asingle
package, Matlab and Simulink are two very different pieces of software with radically different
approaches to modeling of signals and systems. Matlab is an imperative programming language,
whereas Simulink is a block diagram language. In Matlab, one specifies the sequence of steps that
construct asignal or operate on asignal to produce anew signal. In Simulink, one connects blocks
that implement elementary systems to construct more interesting systems. The systemswe construct
are aggregates of simpler systems.

Matlab fundamentally operates on matrices and vectors. Simulink fundamentally operates on dis-
crete and continuous-time signals. Discrete-time signals, of course, can be represented as vectors.
Continuous-time signals, however, can only be approximated. Simulink, since it isacomputer pro-
gram, must of course approximate continuous-time signals as well by discretizing time. But that
approximation is largely transparent, and the user (the model builder) can pretend that he or sheis
operating directly on continuous-time signals.

Thereis considerable value in becoming adept with these software packages. Matlab and Simulink
are often used in practice for “quick-and-dirty” prototyping of concepts. In amatter of afew hours,
very elaborate models can be constructed. This contrasts with the weeks or months that would often
be required to build a hardware prototype to test the same concept.

Of course, a conventional programming language such as C++ or Java could aso be used to con-
struct prototypes of systems. However, these languages lack the rich libraries of built-in functions
that Matlab and Simulink have. A task as conceptualy simple as plotting a waveform can take

323

324 APPENDIX C. LABORATORY EXERCISES

weeks of programming in Java to accomplish well. Algorithms, such as the FFT or filtering algo-
rithms, are also built in, saving considerable effort.

Matlab and Simulink both have capabilities that are much more sophisticated than anything covered
in this text. This may be a bit intimidating at first (“what the heck is singular-value decomposi-
tion!221?"). In fact, these tools are rich enough in functionality to keep you busy for an entire
career in engineering. You will need to learn to ignore what you don’'t understand, and focus on
building up your abilities gradually.

If you have no background in programming, these exercises will be difficult at first. Matlab, at its
root, isafairly conventionally programming language, and it requires a clear understanding of pro-
gramming concepts such as variables and flow of control (for loops, while loops). As programming
languages go, it is an especially easy one to learn, however. Its syntax (the way commands are writ-
ten) is straightforward and close to that of the mathematical concepts that it emulates. Moreover,
since it is an interpreted language (in contrast to a compiled language), you can easily experiment
by just typing in commands at the console and seeing what happens. Be fearless! The worst that
can happen is that you will have to start over again.

These labs assume the computer platform is Microsoft Windows, although any platform capable of
running Matlab and Simulink will work, aslong asit has full support for sound and images.

M echanics of the labs

The labs are divided into two distinct sections, in lab and independent. The purpose of the in-lab
section is to introduce concepts needed for later parts of the lab. Each in-lab section is designed to
be completed during a scheduled lab time with an instructor present to clear up any confusing or
unclear concepts. The in-lab section is completed by obtaining the signature of an instructor on a
verification sheet.

The independent section begins where the in-lab section leaves off. It can be completed within the
scheduled lab period, or may be completed on your own time. You should write a brief summary
of your solution to the lab exercise and turn it in at the beginning of the next scheduled lab period.
Your summary should clearly answer each question posed in the independent section of the lab.

The lab writeup should be kept smple. It must include the names of the members of the group (if
the lab is done by a group), the time of the lab section, the name of the lab, and the date. It should
then proceed to give clear answers to each of the questions posed by the lab. Matlab code should be
provided in afixed width font (Courier New, 10pt, for example) and plots should be clearly labeled
and referenced in the writeup. Plots may be included directly in the flow of the analysis. If included
on a separate page, two to eight plots should be placed on the same page, depending on the nature
of the plots. You can copy Matlab plots into most word processors using the Copy Figure command
in the Edit menu.

Hereis an example of aresponse to a portion of alab:

2. Simple Low Pass Filter
Figure C.1 shows the data before (top) and after (bottom) the low pass filter. The low

325

-101

-15
0

10 20 30 40 50 60 70 80 90 100

-10+

-15

0 10 20 30 40 50 60 70 80 90 100

Figure C.1: Before and after LPF.

pass filter has the effect of smoothing sharp transitions in the original. For instance,
notice the disappearance of the step from sample points 91 to 94. The MATLAB code
used to generate the smoothed waveform v1 from the original waveform x1is:

h5
vl

[11111] / 5
firfilt(x1l, h5);

326 APPENDIX C. LABORATORY EXERCISES
C.1 Arraysand sound

The purpose of thislab isto explore arraysin Matlab and to use them to construct sound signals. The
lab is designed to help you become familiar with the fundamentals of Matlab. It is self contained,
in the sense that no additional documentation for Matlab is needed. Instead, we rely on the on-line
help facilities. Some people, however, much prefer to sit down with a tutorial text about a piece of
software, rather than relying on on-line help. There are many excellent books that introduce Matlab.
Check your local bookstore or The MathWorks' website (http://www.mathworks.com/).

Note that there is some potential confusion because Matlab uses the term “function” somewhat
more loosely than we do when we refer to mathematical functions. Any Matlab command that takes
arguments in parentheses is called a function. And most have a well-defined domain and range,
and do, in fact, define a mapping from the domain to the range. These can be viewed formally as a
(mathematical) functions. Some, however, such as pl ot and sound are a bit harder to view this
way. Thelast exercise here explores this relationship.

C.1.1 In-lab section

To run Matlab simply double click on the Matlab icon on the desktop, or find the Matlab command
in the start menu. Thiswill open a Matlab command window, which displays a prompt “>>". You
type commands at the prompt. Explore the built-in demos by typing deno.

Matlab provides an on-line help system accessible by using the hel p command. For example, to
get information about the function si ze, enter the following:

>> hel p size

There dso is ahelp desk (formatted in HTML for viewing from a web browser) with useful intro-
ductory material. It is accessed from the Help menu. If you have no prior experience with Matlab,
see thetopic “ Getting Started” in the help desk. Spend some time with this. You can find in the help
desk all the information you need to carry out the following exercises.

1. A variable in Matlab is an array. An array has dimensions N x M, where N and M are
in Nats. N isthe number of rows and M isthe number of columns. If N = M = 1, the
variableisascalar. If N = 1 and M > 1, then the variable isarow vector. If N > 1 and
M =1, thenthe variable isacolumn vector. If both N and M are greater than one, then the
variableisamatrix, and if N = M then the variable is a square matrix. The coefficients of
an array arereal or complex numbers.

(d) Each of thefollowing is an assignment of avalueto avariable called ar r ay. For each,
identify the dimensions of the array (M and N), and identify whether the variable is a
scalar, row vector, column vector, or matrix.

array = [1 2 3 4 5]
array = [1:5]

C.1. ARRAYSAND SOUND 327

(b)

(©

array = 1:5
array = [1:1:5]
array = [1:-1:-5]
array = [1 2; 3 4]
array = [1; 2; 3; 4]

Create a 2 x 3 matrix containing arbitrary data. Explore using the Matlab functions
Zer 0s, ones, eye, and r and to create the matrix. Find a way to use the sguare
matrix eye(2) as part of your 2 x 3 matrix. Verify the sizes of your arrays using
si ze.

Use the Matlab commands si ze and | engt h to determine the length of the arrays
givenby 1: 0. 3: 10and 1: 1: - 1. Consider more generally the array constructor pat-
tern

array = start : step : stop

where st art, st op, and st ep are scalar variables or rea numbers. How many el-
ements are there in ar r ay? Give an expression in Matlab in terms of the variables
start,stop,andstep. That is, we should be able to do the following:

>> start = 1;
>> stop = 5;
>> step = 1;
>> array = start:step:stop;

and then evaluate your expression and have it equal | engt h(array) . (Notice that
the semicolons at the end of each command above suppress Matlab's response to each
command.) Hint: to get a general expression, you will need something like the f | oor
function. Verify your answer for thearrays1: 0. 3: 10and 1: 1: - 1.

2. Matlab can be used as a general-purpose programming language. Unlike a general-purpose
programming language, however, it has specia features for operating on arrays that make it
especially convenient for modeling signals and systems.

@

(b)

(©

In this exercise, we will use Matlab to compute

25

> k.

k=0

Useaf or loop (try hel p f or) to specify each individual addition in the summation.

Use the sum function to give a more compact, one-line specification of the sum in
part (a). The difference between these two approaches illustrates the difference between
using Matlab and using amoretraditional programming language. Thefor loop is closer
to the style one would use with C++ or Java. The sumfunction illustrates what Matlab
does best: compact operations on entire arrays.

In Matlab, any built-in function that operates on a scalar can also operate on an array.
For example,

328

(d)

APPENDIX C. LABORATORY EXERCISES

>> sin(pi/4)
ans =
0.7071
>> sin([0 pi/4 pil2 3*pi/4 pi])
ans =

0 0.7071 1. 0000 0.7071 0. 0000

This feature is called vectorization. Use vectorization to construct a vector that tabu-
lates the values of the sin function for the set {0, 7/10,27/10,---,7}. Usethe colon
notation explored in the previous exercise.

Given two arrays A and B that have the same dimensions, Matlab can multiply the ele-
ments pointwise using the . * operator. For example,

>>[1 2 3 4].*[1 2 3 4]
ans =
1 4 9 16

Use this pointwise multiply to tabulate the values of sir? for the set

{0,7/10,2x/10,- -, 7}.

3. A discrete-time signal may be approximated in Matlab by a vector (either arow or a column
vector). In this exercise, you build afew such vectors and plot them.

@

(b)

(©

Create an array that is a row vector of length 36, with zeros everywhere except in the
18th position, which has value 1. (Hint: try hel p zer os to find a way to create a
row vector with just zeros, and then assign the 18-th element of this vector the value
one) This array approximates a discrete-time impulse, which is a signal that is zero
everywhere except at one sample point. We will use impulses to study linear systems.
Plot the impulse signal, using both pl ot and st em

Sketch by hand the sinewave x : [—1, 1] — Reals, given by
Vit e [-1,1], x(t) = sin(2m x 5t + 7/6).

In your sketch carefully plot the value at time 0. Assume the domain represents time
in seconds. What is the frequency of this sine wave in Hertz and in radians per second,
what is its period in seconds, and how many complete cycles are there in the interval
[_17 1]9

Sample the function x from the previous part at 8 kHz, and using Matlab, plot the
samples for the entire interval [—1, 1]. How many samples are there?

C.1. ARRAYSAND SOUND 329

(d)

(€)

(f)

Change the frequency of the sinewave from the previous section to 440 Hz and plot the
signa for theinterval [—1, 1]. Why is the plot hard to read? Plot the samples that lie in
the interval [0,0.01] instead (thisisa 10 msec interval).

The Matlab function sound (see hel p sound) with syntax
sound(sanpl edSi gnal , frequency)

sends the one-dimensional array or vector sanpl edSi gnal to the audio card in your
PC. The second argument specifies the sampling frequency in Hertz. The values in
sanpl edSi gnal are assumed to be real numbers in the range [—1.0,1.0]. Vaues
outside this range are clipped to —1.0 or 1.0. Use this function to listen to the signal
you created in the previous part. Listen to both a 10 msec interval and 2 second interval.
Describe what you hear.

Listen to

sound(0. 5*sanpl edSi gnal , f requency)
and

sound(2*sanpl edSi gnal , f requency)

where sanpl edSi gnal isthe signal you created in part (d) above. Explain in what
way are these different from what you heard in the previous part. Listen to

sound(sanpl edSi gnal , frequency/ 2)
and
sound(sanpl edSi gnal , frequency* 2)

Explain how these are different.

C.1.2 Independent section

1. Use Matlab to plot the following continuous-time functions f: [—0.1,0.1] — Reals:

vVt € [-0.1,0.1], f(t) = sin(2w x 100t)
Ve [-0.1,01], f(t) = exp(—10¢)sin(2r x 100¢)
Vt € [-0.1,0.1], f(t) = exp(10t)sin(27 x 100¢t)

The first of these a familiar sinusoidal signal. The second is a sinusoidal signal with a de-
caying exponential envelope. The third is a sinusoidal signal with a growing exponential
envelope. Choose a sampling period so that the plots closely resemble the continuous-time
functions. Explain your choice of the sampling period. Use subpl ot to plot all three func-
tionsin one tiled figure. Include the figure in your lab report.

2. Use Matlab to listen to a one-second sinusoidal waveform scaled by a decaying exponential
given by

Vit € [0,1], f(t) = exp(—5t)sin(2m x 440t).

Use a sample rate of 8 kHz. Describe how this sound is different from sinusoidal sounds that
you listened to in the in-lab section.

330

APPENDIX C. LABORATORY EXERCISES

3. Construct a sound signal that consists of a sequence of half-second sinusoids with exponen-
tially decaying envelopes, as in the previous part, but with a sequence of frequencies: 494,
440, 392, 440, 494, 494, and 494. Listen to the sound. Can you identify the tune? In your lab
report, give the Matlab commands that produce the sound. When the next lab meets, play the
sound for your instructor.

4. Thisexercise explores the relationship between Matlab functions and mathematical functions.

@

(b)

(©

The sound function in Matlab returns no value, as you can see from the following:

>> X = sound(n)
??? Error using ==> sound
Too many out put argunents.

Nonetheless, sound can be viewed as afunction, with its range being the set of sounds.
Read the help information on the sound function carefully and give a precise character-
ization of it as a mathematical function (define its domain and range). You may assume
that the elements of Matlab vectors are members of the set Doubles, double-precision
floating-point numbers, and you may, for simplicity, consider only the two-argument
version of the function, and model only monophonic (not stereo) sound.

Give a smilar characterization of the soundsc Matlab function, again considering
only the two-argument version and monophonic sound.

Give asimilar characterization of the pl ot Matlab function, considering the one argu-
ment version with a vector argument.

C.1. ARRAYSAND SOUND 331

I nstructor Verification Sheet for Lab C.1

Name: Date:

1. Matlab arrays.

Instructor verification:

2. Matlab programming.

Instructor verification:

3. Discrete-time signalsin Matlab.

Instructor verification:

332 APPENDIX C. LABORATORY EXERCISES
C.2 Images

The purpose of this lab to explore images and colormaps. You will create synthetic images and
movies, and you will process a natural image by blurring it and by detecting its edges.

C.21 Imagesin Matlab

Figure C.2 shows a black and white image where the intensity of the image varies sinusoidally in
the vertical direction. Thetop row of pixelsin the image iswhite. Asyou move down the image, it
gradually changes to black, and then back to white, completing one cycle. Theimageis 200 x 200
pixels so the vertical frequency is /200 cycles per pixel. The image rendered on the page is about
10 x 10 centimeters, so the vertical frequency is 0.1 cycles per centimeter. The image is constant
horizontally (it has a horizontal frequency of O cycles per centimeter).

We begin this lab by constructing the Matlab commands that generate this image. To do this, you
need to know a little about how Matlab represents images. In fact, Matlab is quite versatile with
images, and we will only explore a portion of what it can do.

An image in Matlab can be represented as an array with two dimensions (a matrix) where each
element of the matrix indexes a colormap. Consider for example the image constructed by the
i mage command:

>> v = [1:64],
>> i mage(Vv);
This should create an image like that shown in figureC.3.

The image is 1 pixel high by 64 pixels wide (Matlab, by default, stretches the image to fit the
standard rectangular graphic window, so the one pixel vertically is rendered as a very tall pixel.)
You could use ther eprmat Matlab function to make an image taller than 1 pixel by just repeating
this row some number of times.

The pixels each have value ranging from 1 to 64. These index the default colormap, which has
length 64 and colors ranging from blue to red through the rainbow. To see the default colormap
numericaly, type

>> map = col or map
To verify its size, type
>> size(nap)

ans =

64 3

C.2. IMAGES

Figure C.2: An image where the intensity varies sinusoidally in the vertical

direction.

20

40

60

80

100

120

140

160

1801

200

50 100 150 200

10 20 30 40 50 60

Figure C.3: Animage of the default colormap.

333

334 APPENDIX C. LABORATORY EXERCISES

Notice that it has 64 rows and three columns. Each row is one entry in the colormap. The three
columns give the amounts of red, green, and blue respectively in the colormap. These amountsrange
from 0 (none of the color present) to 1.0 (the maximum amount of the color possible). Examine the
colormap to convince yourself that it begins with blue and ends with red.

Change the colormap using the col or map command as follows:

>> map = gray(256);
>> col or map(map) ;
>> i mage([1: 256]);

Examine the map variable to understand the resulting image. Thisis caled a grayscale colormap.

C.2.2 In-lab section

1. What isthe representation in a Matlab colormap for the color white? What about black?

2. Create a200 x 200 pixel image like that shown in figure C.2. You will want the colormap
set to gray(256), as indicated above. Note that when you display this image using the
i mage command, it probably will not be square. Thisisbecause of the (somewhat annoying)
stretching that Matlab insists on doing to make the image fit the default graphics window. To
disable the stretching and get a square image, issue the command axi s i mage

axi s i nage

As usua with Matlab, a brute-force way to create matrices is to use for loops, but there is
amost always a more elegant (and faster) way that exploits Matlab’s ability to operate on
arrays dl at once. Try to avoid using for loops to solve this and subsequent problems.

3. Change your image so that the sinusoidal variations are horizontal rather than vertical. Vary
the frequency so that you get four cycles of the sinusoid instead of one. What is the frequency
of thisimage?

4. Animage can have both vertical and horizontal frequency content at the same time. Change
your image so that the intensity at any point is the sum of avertical and horizontal sinusoid.
Be careful to stay with the numerical range that indexes the colormap.

5. Get the image file from
http://ww. eecs. ber kel ey. edu/ " eal / eecs20/ i mages/ hel en. j pg

Saveit in some directory where you have write permission with the name “helen.jpg”. (Note:
For reasons that only the engineers at Microsoft could possibly explain, Microsoft Internet
Explorer does not allow you to save thisfile asa JPEG file, ".jpg’. It only alows you to save
the file as a bit map, ".bmp’, which is already decoded. So we recommend using Netscape
rather than IE.)

In Matlab, change the current working directory to that directory using the cd command.
Thenusei nf i nf o to get information about the file, as follows:

C.2. IMAGES 335
>> infinfo(’helen.jpg)
ans =
Fi | enanme: ' hel en.j pg’

Fi | eMbdDat e: ' 27-Jan-2000 10: 48: 16’
Fil eSi ze: 18026

Format: 'jpg’
For mat Versi on: '’

W dt h: 200

Hei ght: 300

Bi t Dept h: 24
Col or Type: ’'truecol or’
For mat Si gnature: '’

Make anote of the file size, whichiisgiven in bytes. Thenusei nr ead to read theimage into
Matlab and display it as follows:

>> helen = inread(’ helen.jpg);
>> j mage(hel en);
>> axi s i mge

Usethewhos command to identify the size, in bytes, and the dimensions of thehel en array.
Can you infer from thiswhat ismeant by * t r uecol or’ above? Thefileis stored in JPEG
format, where JPEG, which stands for Joint Pictures Expert Group, is an image representation
standard. Thei nr ead function in Matlab decodes JPEG images. What is the compression
ratio achieved by the JPEG file format (the compression ratio is defined to be size of the
uncompressed data in bytes divided by the size of the compressed data in bytes).

6. The hel en array returned by i nr ead has elements that are of type ui nt 8, which means
unsigned 8-bit integers. The possible values for such numbers are the integers from 0O to 255.
The upper left pixel of the image can be accessed as follows:

>> pixel = helen(1,1,:)
pixel (:,:,1) =

205
pixel (:,:,2) =

205

336 APPENDIX C. LABORATORY EXERCISES

pi xel (:,:,3)

205

In this command, the final argument is*:" which means to Matlab, return all elements in the
third dimension. The information about the result is:

>> whos pi xel
Nanme Size Bytes C ass

pi xel 1x1x3 3 uint8 array
Grand total is 3 elenents using 3 bytes
Matlab provides the squeez e command to remove dimensions of length one;
>> rgb = squeeze(pixel)
rghb =

205
205
205

Find the RGB values of the lower right pixel. By looking at the image, and correlating what
you see with these RGB values, infer how white and black are represented in truecol or images.

Matlab can only do very limited operations arrays of this type.

C.2.3 Independent section

1. Construct a mathematical model for the Matlab i nage function as used in parts3 and 4 of
the in-lab section by giving its domain and its range. Notice that the colormap, although it
is not passed to i nage as an argument, isin fact an argument. It is passed in the form of
aglobal variable, the current colormap. Your mathematical model should show this as an
explicit argument.

2. In Matlab, you can create a movie using the following template:

nunframes = 15;
m = novi ei n(nunFranes) ;
for frame = 1: nunfranes;
create an imge X ...
i mge(X), axis imge

C.2. IMAGES 337

nm:.,frame) = getfrane;
end
novi e(m

The line with the get f r ame command grabs the current image and makes it aframe of the
movie. Use this template to create a vertical sinusoidal image where the sine waves appear
to be moving upwards, like waves in water viewed from above. Try hel p novi e to learn
about various ways to display this movie.

3. We can examineindividually the contributions of red, green, and blue to theimage by creating
color separations. Matlab makesthis very easy on truecolor images by providing its versatile
array indexing mechanism. To extract the red portion of the hel en image created above, we
can simply do:

red = helen(:,:,1);
Theresultisa 300 x 200 array of unsigned 8-bit integers, as we can see from the following:

>> whos red
Nanme Si ze Bytes C ass

red 300x200 60000 uint8 array
Grand total is 60000 el ements using 60000 bytes

(Note that, strangely, the squeeze command is not needed whenever the last dimension(s)
collapse to size 1.) If we display this array, its value will be interepreted as indexes into the
current color map:

i mge(red), axis inage

If the current colormap is the default one, then the image will look very off indeed (and very
colorful). Change the colormap to grayscale to get a more meaningful image:

map = gray(256);
col or map(nap) ;

The resulting image gives the red portion of the image, albeit rendered in black and white.
Construct a colormap to render it in red. Show the Matlab code that does this in your re-
port (you need not show the image). Then give similar color separations for the green and
blue portions. Again, showing the Matlab code is sufficient. Hint: Create a matrix to mul-
tiply pointwise by the map matrix above (using the . * operator) to zero out two of its three
columns. Thezer os and ones functions might be useful.

4. A moving average can be applied to an image, with the effect of blurring it. For simplic-
ity, operate on a black and white image constructed from the above red color separation as
follows:

338

APPENDIX C. LABORATORY EXERCISES

>> bw mage = doubl e(red);
>> | nage(bw mage), axis inmge
>> col ormap(gray(256))

The first line converts the image to an array of doubles instead of unsigned 8-bit integers
because Matlab cannot operate numerically on unsigned 8-bit integers. The remaining two
lines simply display the image using a grayscale colormap.

Construct a new image where each pixel is the average of 25 pixels in the origina image,
where the 25 pixels liein a5 x 5 square. The new image will need to be dightly smaller
than the original (figure out why). The result should be a blurred image because the moving
average reduces the high frequency content of a signal, and sharp edges are high frequency
phenomena.

A simple way to perform edge detection on a black-and-white image is to calculate the dif-
ference between a pixel and the pixel immediately above it and to the left of it. If either
difference exceeds some threshold, we decide there is an edge at that position in the image.
Perform this calculation on the image bwl mage given in the previous part. To display with
the edges, start with a white image the same size or dightly smaller than the original image.
When you detect an edge at a pixel, replace the white pixel with a black one. The resulting
image should resemble a line drawing of Helen. Experiment with various threshold values.
Hint: To perform the threshold test, you will probably need the Matlab i f command. Try
help if andhel p rel op.

Note: Edge detection is often the first step in image under standing, which is the automatic
interpretation of images. A common application of image understanding is optical char-
acter recognition or OCR, which is the transcription of printed documents into computer
documents.

The difference between pixels tends to emphasize high frequency content in the image and
deemphasize low frequency content. Thisis why it is useful in detecting edges, which are
high frequency content. Thisis obvious if we note that frequency in images refers to the rate
of change of intensity over space. That rate is very fast at edges.

C.2. IMAGES 339

I nstructor Verification Sheet for C.2

Name: Date:

1. Representation in acolormap of white and black.

Instructor verification:

2. Vertical sinusoidal image.

Instructor verification:

3. Horizonta higher frequency image. Give the frequency.

Instructor verification:

4. Horizontal and vertical sinusoidal image.

Instructor verification:

5. Compression ratio.

Instructor verification:

6. Representation in truecolor of white and black.

Instructor verification:

340 APPENDIX C. LABORATORY EXERCISES

C.3 State machines

State machines are sequential. They begin in a starting state, and react to a sequence of inputs by
sequentialy transitioning between states. Implementation of state machines in software is fairly
straightforward. In thislab, we explore doing this systematically, and build up to an implementation
that composes two state machines.

C.3.1 Background
Stringsin Matlab
State machines operate on sequences of symbols from an alphabet. Sometimes, the alphabet is

numeric, but more commonly, it isaset of arbitrary elements with names that suggest their meaning.
For example, the input set for the answering machine in figure3.1 is

Inputs = {ring, offhook, end greeting, end message, absent }.

Each element of the above set can be represented in Matlab as a string (try hel p stri ngs).
Strings are surrounded by single quotes. For example,

>> x ='ring’;

The string itself isan array of characters, so you can index individual characters, asin
>> x(1:3)

ans =

rin

You can join strings just asyou join ordinary arrays,

>> y "the;
>> z = 'bell’;
>> [x, vy, z]

ans =
ri ngt hebel |
However, this is not necessarily what you want. You may want instead to construct an array of

strings, where each element of the array is a string (rather than a character). Such a collection of
strings can be represented in Matlab as acell array,

C.3. STATE MACHINES 341
>> ¢ = {'ring ’'offhook’ 'end greeting ’'end nessage’ ’absent’};

Notice the curly braces instead of the usual square braces. A cell array in Matlab is an array where
the elements of the array are arbitrary Matlab objects (such as strings and arrays). Cell arrays are
indexed like ordinary arrays, so

>> ¢(1)
ans =
"ring’

Often, you wish to test a string to see whether it is equal to some string. You usually cannot compare
strings or cells of acell array using ==, asillustrated here:

>> c ='ring’;

>> jf (c == "offhook’) result = 1; end

??? Error using ==> ==

Array di mensions nust match for binary array op.

>> ¢ = {'ring ’'offhook’ 'end greeting ’'end nessage’ ’absent’};

>> if (c(1l) =="'ring’) result = 1; end
??? Error using ==> ==
Function '==" not defined for variables of class '"cell’.

Strings should instead be compared using strcnp or swi t ch (see the on-line help for these
commands).

M-files

In Matlab, you can save programs in a file and execute them from the command line. The file
is called an m-file, and has a name of the form command.m, where command is the name of the
command that you enter on the command line to execute the program.

You can use any text editor to create and edit m-files, but the one built into Matlab is probably the
most convenient. To invoke it, select “New” and “M-file” under the “File” menu.

To execute your program, Matlab needs to know where to find your file. The simplest way to handle
this is to make the current directory in Matlab the same as the directory storing the m-file. For
example, if you put your file in the directory

D: \ user s\ eal

then the following will make the file visible to Matlab

342 APPENDIX C. LABORATORY EXERCISES

>> cd D:\users\eal
>> pwd

ans =

D: \ user s\ eal

The cd command instructs Matlab to change the current working directory. The pwd command
returns the current working directory (probably the mnemonic is present working directory).

You caninstruct Matlab to search through some sequence of directories for your m-files, so that they
do not have to al be in the same directory. See hel p pat h. For example, instead of changing
the current directory, you could type

pat h(path, 'D:\users\eal’);

This command tells Matlab to search for functions wherever it was searching before (the first argu-
ment pat h) and also in the new directory.

Suppose you create afile called hel | 0. mcontaining

% HELLO - Say hell o.
disp(’' Hello);

Thefirst lineisacomment. Thedi sp command displaysitsargument without displaying avariable
name. On the command line, you can execute this

>> hello
Hel | o

Command names are not case sensitive, so HELLOisthesameasHel | o and hel | 0. The comment
in thefileis used by Matlab to provide on-line help. Thus,

>> help hello

HELLO - Say hel | o.

The M-file above is a program, not afunction. There is no returned value. To define afunction, use
thef unct i on command inyour m-file. For example, storethefollowingininafiler ever se. m

function result = reverse(argunent)
% REVERSE - return the argunment array reversed.
result = argunent (|l ength(argument):-1:1);

C.3. STATE MACHINES 343

Then try:

>> reverse(’ hello')
ans =

ol | eh

The returned value is the string argument reversed.

A function can have any number of arguments and returned values. To define a function with two
arguments, use the syntax

function [resultl, result2] = nyfunction(argl, arg2)

and then assign valuestoresul t 1 and r esul t 2 in the body of the file. To use such function,
you must assign each of the return values to a variable as follows:

>> [rl, r2] = nyfunction(al, a2);

The names of the arguments and result variables are arbitrary.

C.3.2 In-lab section
1. Write afor loop that counts the number of occurrencesof * a’ in
>> d - {l al i) bl i) al i) al i) bl };

Then defineafunction count that counts the number of occurrencesof * a’ in any argument.
How many occurrences are there in the following two examples?

>>X:[lal’ lbl’ 101’ lal’ 1aal];
>> y = {l al , b bl , b C'I , b a , aal };
>> count (x)
ans =

??
>> count (y)
ans =

?7?

344 APPENDIX C. LABORATORY EXERCISES

{0} /0 {13 /0 {171

{0} /1

Inputs = {0, 1, absent}
Outputs = {0, 1, absent}

Figure C.4: A simple state machine.

Why are they different?

2. Thei nput function can be used to interactively query the user for input. Write a program
that repeatedly asks the user for a string and then uses your count function to report the
number of occurrences of * a’ in the string. Write the program so that if the user enters
qui t or exi t, the program exits, and otherwise, it asks for another input. Hint: Try hel p
whi | e and hel p br eak.

3. Consider the state machine in figure C.4. Construct an m-file containing a definition of its
update function. Then construct an m-file containing a program that queries the user for an
input, then if the input isin the input aphabet of the machine, usesit to react, and then asks
the user for another input. If theinput is not in the input alphabet, the program should assume
the input is absent and stutter. Be sure that your update function handles stuttering.

C.3.3 Independent section

1. Design avirtual pet,! in this case a cat, by constructing a state machine, writing an update
function, and writing a program to repeatedly execute the function, as in @) above. The cat
should behave as follows:

It starts out happy. If you pet it, it purrs. If you feed it, it throws up. If time passes,
it gets hungry and rubs against your legs. If you feed it when it is hungry, it purrs
and gets happy. If you pet it when it is hungry, it bites you. If time passes when it
is hungry, it dies.

The italicized phrases in this description should be elements in either the state space or the
input or output alphabets. Give the input and output alphabets and a state transition diagram.
Define the update function in Matlab, and write a program to execute the state machine until
the user types'quit’ or ’exit.

This problem is inspired by the Tamagotchi virtual pet made by Bandai in Japan. Tamagotchi which trandlates
as "cute little egg,” were extremely popular in the late 1990’s, and had behavior considerably more complex than that
described in this exercise.

C.3. STATE MACHINES 345

2. Construct a state machine that provides inputs to your virtual cat so that the cat never dies.
In particular, your state machine should generate time passes and feed outputs in such away
that the cat never reaches the dies state.

Note that this state machine does not have particularly meaningful inputs. You can let the
input alphabet be
Inputs = {1, absent }

where an input of 1 indicates that the machine should output a non-stuttering output, and an
input of absent means it should output a stuttering output.

Write a program where your feeder state machine is composed in cascade with your cat state
machine, and verify (experimentally) that the cat does not die. Your state machine should
alow time to pass (by producing an infinite number of 'time passes outputs) but should
otherwise be as smple as possible.

Note that a major point of this exercise is to show that systematically constructed state ma-
chines can be very easily composed.

The feeder state machineis called an open-loop controller because it controls the pet without
observing the output of the pet. For most practical systems, it is not possible to design an
open-loop controller. The next lab explores closed-loop controllers.

346 APPENDIX C. LABORATORY EXERCISES

I nstructor Verification Sheet for C.3

Name: Date:

1. Count the number of occurrences of ' a’ . Understand the difference between a cell array and
an array.

Instructor verification:

2. Write aprogram with an infinite loop and user input.

Instructor verification:

3. Construct and use update function.

Instructor verification:

C.4. CONTROL SYSTEMS 347
C.4 Control systems

This lab extends the previous one by introducing nondeterminism and feedback. In particular, you
will modify the virtual pet that you constructed last time so that it behaves nondeterministically. The
modification will make it impossible to keep the pet alive by driving it with another state machine
in a cascade composition. You will instead have to use a feedback composition.

This scenario istypical of acontrol problem. The pet is asystem to be controlled, with the objective
of keeping it alive. You will construct a controller that observes the output of the virtual pet, and
based on that output, constructs an appropriate input that will keep the pet alive. Sincethis controller
observes the output of the pet, and provides input to the pet, it is called a closed-loop controller.

C.4.1 Background

Nondeterministic state machines have a possibleUpdates function rather than an update function.
The possibleUpdates function returns a set of possible updates. You will construct this function to
return acell array, which was explored in the previous lab.

A software implementation of a nondeterministic state machine can randomly choose from among
the results returned by possibleUpdates. It could conceptualy flip coins to determine which result
to choose each time. In software, the equivalent of coin flips is obtained through pseudo-random
number generators. The Matlab function r and is just such a pseudo-random number generator.
The way that it works isthat each time you useit, it gives you anew number (try hel p rand).

For this lab, you will need to be able to use cell arrays in more sophisticated ways than in the
previous lab. Recall that a cell array is like an ordinary array, except that the elements of the array
can be arbitrary Matlab objects, including strings, arrays, or even cell arrays. A cell array can be
constructed using curly braces instead of square brackets, asin

>> |etters ={"a, 'b, "¢, 'd, e};

>> whos letters
Nane Size Bytes C ass
letters 1x5 470 cell array

Grand total is 10 elenments using 470 bytes

The elements of the cell array can be accessed like elements of any other array, but there is one
subtlety. If you access an element in the usual way, the result is a cell array, which might not be
what you expect. For example,

>> x = letters(2)

X =

348 APPENDIX C. LABORATORY EXERCISES

i) bl
>> whos x
Nane Size Bytes d ass
X 1x1 94 cell array

Grand total is 2 elenents using 94 bytes

To access the element as a string (or whatever the element happens to be), then use curly braces
when indexing the array, asin

>>y = |etters{2}

y =
b
>> whos vy

Nane Si ze Bytes d ass

y 1x1 2 char array

Grand total is 1 elenments using 2 bytes

Notice that now the result is a character array rather thana1 x 1 cell array.

You can aso use curly braces to construct a cell array piece by piece. Here, for example, we
construct and display a two-dimensional cell array of strings, and then access one of the elements
asastring.

>> t{1,1} = ’upper left’;

>> t{1,2} = 'upper right’;

>> t{2,1} = lower left’;

>> t{2,2} = 'lower right’;

>>

t =
"upper |left’ "upper right’
"lower left’ "l ower right’

>> t{2,1}

ans =

C.4. CONTROL SYSTEMS 349

| ower |eft
You can find out the size of acell array in the usual way for arrays

>> [rows, cols] = size(t)

I OWwWs

col s

You can also extract an entire row or column from the cell array the same way you do it for ordinary
arrays, using '’ in place of the index. For example, to get the first row, do

t(1,:)
ans =

"upper left’ "upper right’

C.4.2 In-lab section

1. Construct a Matlab function sel ect that, given a cell array with one row as an argument,
returns a randomly chosen element of the cell array. Use your function to generate a random
sequence of 10 letters from the cell array

>> |etters = {"a’, 'b, "¢, 'd, e},
Hint: The Matlab function f | oor combined with r and might prove useful to get random
indexes into the cell array.

2. Construct a Matlab function chooser ow that, given a cell array with one or more rows,
randomly chooses one of the rows and returns it as a cell array. Apply your function a few
timestothe’t ' array that we constructed above.

3. A nondeterministic state machine has a possibleUpdates function rather than updates. This
function returns a set of pairs, where each pair is anew state and an output.

350 APPENDIX C. LABORATORY EXERCISES

A convenient Matlab implementation is a function that returns a two-dimensional cell array,
with each of the possible updates on one row. As a first step towards this, modify your
realization of the update function for the virtual cat of the previous lab so that it returns a
1 x 2 cell array with the next state and output. Also modify your program that runs the cat
(without the driver) so that it uses your new function. Verify that the cat till works properly.

4. Now modify the cat’s behavior so that if it is hungry and you feed it, it sometimes gets happy
and purrs (as it did before), but it sometimes stays hungry and rubs against your legs. 1.e.,
change your update function so that if the state is hungry and you feed the cat, then return a
2 x 2 cell array where the two rows specify the two possible next state, output pairs. Modify
the program that runs the cat to use your chooser owfunction to choose from among the
options.

5. Compose your driver machine from the previous lab with your nondeterministic cat, and
verify that the driver no longer keeps the cat alive. In fact, no open-loop controller will be
able to keep the cat alive and alow time to pass. In the independent section of this lab, you
will construct a closed-loop controller that keeps the cat aive. It is afeedback composition
of state machines.

C.4.3 Independent section

Design a deterministic state machine that you can put into a feedback composition with your non-
deterministic cat so that the cat is kept alive and time passes. Give the state transition diagram for
your state machine and write a Matlab function that implements its update function. Write aMatlab
program that implements the feedback composition.

Note that your program that implements the feedback composition faces a challenging problem.
When the program starts, neither the inputs to the controller machine nor the inputs to the cat
machine are available. So neither machine can react. For your controller machine, you should
define Matlab functions for both update, which requires a known input, and output, which does
not. The output function, given the current state, returns the output that will be produced by the
next reaction, if it is known, or unknown if it is not known. In the case of your controller, it should
aways be known, or the feedback composition will not be well formed.

Verify (by running your program) that the cat does not die.

C.4. CONTROL SYSTEMS 351

I nstructor Verification Sheet for C.4

Name: Date:

1. Generated random sequence of lettersusing ' sel ect’ .

Instructor verification:

2. Applied chooser owtothe't ' array.

Instructor verification:

3. The cat still works with the update function returning a cell array.

Instructor verification:

4. The nondeterministic sometimes stays hungry when fed.

Instructor verification:

5. The nondeterministic cat dies under open-loop contral.

Instructor verification:

352 APPENDIX C. LABORATORY EXERCISES

C.5 Difference equations

The purpose of this lab is to construct difference equation models of systems and to study their
properties. In particular, we experimentally examine stability by constructing stable, unstable, and
marginally stable systems. We will also introduce elementary complexity measures. The principal
new Matlab skill required to develop these concepts is matrix operations.

C.5.1 In-lab section

1. Matlab isparticularly good at matrix arithmetic. In this problem, we explore matrix multipli-
cation (see sidebar on page 139).
1 1

Without using Matlab, give M™, forn = 0, 1, 2, 3. Recall that by mathematical conven-
tion, for any square matrix M, MY = I, the identity matrix, so in this case,

o |10
weis]

Guess the general form of the matrix M™. That is, give an expression for each of the
elements of the matrix M™.

(a) Consider the2 x 2 matrix

(b) Use Matlab to compute M?2°. Was your guess correct? Calculate a few more values
using Matlab until your guessis correct.

(c) If your guess was correct, try to show it using induction. That is, first show that your
guess for M™ is correct for some fixed n, like for example n = 0. Then assume your
guess for M™ is correct is for some fixed n, and show that it is correct for A1,

2. A vector is a matrix where either the number of rows is one (in the case of arow vector) or
the number of columnsis one (in the case of acolumn vector). Let

[t

be a column vector. We can equally well write this b = [2,3]", where the superscript T
indicates that the row vector [2, 3] is transposed to make a column vector.

(8) Create a column vector in Matlab equal to b above. Multiply it by M, given in the
previous problem. Try forming both bAZ and Mb. Why does only one of these two
work?

(b) Create arow vector by transposing b. (Try hel p transpose or look up “transpose”
in the help desk.) Multiply this transpose by M. Try both ¥ M and Mb”. Why does
only one of them work?

C.5. DIFFERENCE EQUATIONS 353

3. Consider a 2-dimensiona difference equation system given by

Ao cos(w) —sin(w)],b_lO],c_U

sin(w) cos(w) 1

—cos(w)
sin(w)

‘|7d_07

where w, o € Reals. Note that this is similar to the systems studied in exercises5 and 8 of
chapter 5, with the differences being the multiplying constant o and the ¢ vector. Letw = 7/8
and plot the first 100 samples of the zero-state impulse response for the following values of

@ o=1.
(b) o =0.95.
() o =1.05.

(d) For which values of o isthe result periodic? What is the period? The system producing
the periodic output is called an oscillator .

(e) You have constructed three distinct difference equation systems. One of theseisastable
system, one is an unstable system, and one is amarginally stable. Which is which?
You can infer the answer from the ordinary English-language meaning of the word “ sta-
ble” What will happen if the unstable system is alowed to continue to run beyond the
100 samples you calculated?

C.5.2 Independent section

1. Inlab C.1 you constructed a sound waveform f: Reals — Reals given by
Vtel0,1], f(t)=exp(—>bt)sin(2m x 440¢).

You wrote aMatlab script that calculated samples of this waveform at a sample rate of 8 kHz.
In this lab, we will construct the same waveform in a very different way, using difference
eguations.

Construct a difference equation system with impul se response given by
Vn e Nats), h(n) = exp(—5n/8000)sin(27 x 440n/8000).

Give the matrix A, the vectors b, and ¢, and the scalar d of (5.27) and (5.28). Also give a
Matlab program that produces the first 8000 samples of this impulse response and playsit as
asound. Hint: You will need to understand what you did in problem3 of the in-lab section,

and you may find it useful to use the results of exercise8 in chapter 5.

2. For the system with the impulse response constructed in part1, change the input so it consists
of animpulse every 1/5 of asecond. |.e., at an 8kH sample rate,

(n) = 1 if nisamultiple of 1600
=Y 0 otherwise

Write a Matlab script that plays two seconds of sound with this input. NOTE: Thisis a
simplified model of a guitar string being repeatedly plucked. The model is justifiable on
physical grounds, although it is afairly drastic simplification.

354 APPENDIX C. LABORATORY EXERCISES

3. Compare the complexity of the state machine model and the one you constructed in labC.1.
In particular, assuming in each case that you generate one second of sound at an 8kHz sample
rate, count the number of scalar multiplications and additions that must be done to construct
the sound vector. In the redlization in lab C.1, you used the built-in Matlab functions exp
and si n. These functions are surprisingly expensive to compute, so count each evaluation of
exp or si n on ascalar argument as 20 multiplications and 15 additions (they are actually
typically more expensive even than this). You should find that the state machine realization
is far less expensive by this measure. Do not count the cost of the Matlab sound function,
which we can’t easily determine.

C.5. DIFFERENCE EQUATIONS 355

I nstructor Verification Sheet for C.5

Name: Date:

1. Matrix multiplication in Matlab, and induction demonstration.

Instructor verification:

2. Matrix-vector multiplication.

Instructor verification:

3. Sinusoids with exponential envelopes; stability.

Instructor verification:

356 APPENDIX C. LABORATORY EXERCISES

C.6 Differential equations

The purpose of thislab isto experiment with models of continuous-time systems that are described
as differential equations. The exercises aim to solidify state-space concepts while giving some
experience with software that models continuous-time systems.

The lab uses Simulink, a companion to Matlab. The lab is self contained, in the sense that no
additional documentation for Simulink is needed. Instead, we rely on the on-line help facilities. Be
warned, however, that these are not as good for Simulink as for Matlab. The lab exercise will guide
you, trying to steer clear of the more confusing parts of Simulink.

Simulink is a block-diagram modeling environment. As such, it has a more declarative flavor than
Matlab, which isimperative. You do not specify exactly how signals are computed in Simulink. You
simply connect together blocks that represent systems. These blocks declare arelationship between
the input signal and the output signal.

Simulink excels at modeling continuous-time systems. Of course, continuous-time systems are not
directly realizable on a computer, so Simulink must simulate the system. There is quite a bit of
sophistication in how this is done. The fact that you do not specify how it is done underscores the
observation that Simulink has a declarative flavor.

The simulation is carried out by a solver, which examines the block diagram you have specified
and constructs an execution that simulates its behavior. Asyou read the documentation and interact
with the software, you will see various references to the solver. In fact, Simulink provides a variety
of solvers, and many of these have parameters you can control. Indeed, simulation of continuous-
time systems is generally inexact, and some solvers work better on some models than others. The
models that we will construct work well with the default solver, so we need not be concerned with
this (considerable) complication.

Simulink can also model discrete-time systems, and (abit clumsily) mixed discrete and continuous-
time systems. We will emphasize the continuous-time modeling because this cannot be done (con-
veniently) in Matlab, and it isredlly the strong suit of Simulink.

C.6.1 Background

To run Simulink, start Matlab and type si nul i nk at the command prompt. This will open the
Simulink library browser. To explore Simulink demos, at the Matlab command prompt, type deno,
and then find the Simulink item in the list that appears. To get an orientation about Simulink, open
the help desk (using the Help menu), and find Simulink. Much of what isin the help desk will not
be very useful to you. Find a section with atitle “Building a Simple Model” or something similar
and read that.

We will build models in state-space form, as in chapter 5, and as in the previous lab, but in con-
tinuous time. A continuous-time state-space model for a linear system has the form (see section
5.6)

2(t) = Az(t) + bu(t) (Cy

C.6. DIFFERENTIAL EQUATIONS 357

w(t) = cz(t) + dv(t) (C.2)
where
e z:Reals — Reals" gives the state response;
e Z(t) isthe derivative of z evaluated at t € Reals,
e v:Reals — Realsistheinput signal; and
e w:Reals — Realsisthe output signal.
The input and output are scalars, so the models are SISO, but the state is a vector of dimension NV,

which in general can be larger than one. The derivative of avector z is simply the vector consisting
of the derivative of each element of the vector.

The principle that we will follow in modeling such a system is to use an Integrator block, which
looks like thisin Simulink:

> >

1
s

Integrator

This block can be found in the library browser under “ Simulink” and “Continuous.” Create a new
model by clicking on the blank-document icon at the upper left of the library browser, and drag an
integrator into it. You should see the same icon as above.

If the input to the integrator is Z, then the output is z (just think about what happens when you
integrate a derivative). Thus, the pattern we will follow is to provide as the input to this block a
signa 2.
We begin with a one-dimensional system (N = 1) in order to get familiar with Simulink. Consider
the scalar differential equation

2(t) = az(t) (C3

where ¢ € Realsis agiven scalar and z: Reals — Reals and z(0) is some given initial state. We
will set things up so that the input to the integrator is Z and the output is z. To provide the input,
however, we need the output, since 2(t) = az(t). So we need to construct a feedback system that

looks like this:
1
_ 4» 1
S

Integrator Gain

This model seems self-referential, and infact it is, just asis (C.3).

Construct the above model. You can find the triangular “Gai n” block in the library browser under
“Simulink” and “Math.” To connect the blocks, simply place the cursor on an output port and click
and drag to an input port.

358 APPENDIX C. LABORATORY EXERCISES
After constructing the feedback arc, you will likely see the following:

)14%
S

Integrator Gain

This is ssimply because Simulink is not very smart about routing your wires. You can stretch the
feedback wire by clicking on it and dragging downwards so that it does not go over top of the
blocks.

This model, of course, has no inputs, no initial state, and no outputs, so will not be very interesting
torunit. You can set theinitial state by double clicking on the integrator and filling in a value under
“initial condition.” Set the initial state to 1. Why is the initia state a property of the integrator?
Because its output at time ¢ isthe state at time ¢. The “initial condition” parameter gives the output
of the integrator when the model starts executing. Just like the feedback compositions of state ma-
chinesin chapter 4, we need at least one block in the feedback |oop whose output can be determined
without knowing its input.

You will want to observe the output. To do this, find a block called “ Scope” under “Simulink” and
“Sinks’ in the library browser, and drag it into your design. Connect it so that it displays the output

of the integrator, as follows:
— .

Scope

ntegrator Gain

.

To make the connection, you need to hold the Control key while dragging from the output port of
the integrator to the input port of the Scope. We are done with the basic construction of the model.
Now we can experiment with it.

C.6.2 In-lab section

1. Set the gain of the gain block by double clicking on the triangular icon. Set it to —0.9. What
value of a does this give you in the equation (C.3)?

2. Run the model for 10 time units (the default). To run the model, choose “Start” under the
“Simulation” menu of the model window. To control the number of time units for the simula-
tion, choose “Parameters’ under the “ Simulation” menu. To examine the result, double click
on the Scope icon. Clicking on the binoculars icon in the scope window will result in a better
display of the result.

C.6. DIFFERENTIAL EQUATIONS 359

3. Write down analyticaly the function z given by this model. You can guessits form by exam-
ining the simulation result. Verify that it satisfies (C.3) by differentiating.

4. Changethe gain block to have value 0.9 instead of —0.9 and re-run the model. What happens?
Is the system stable? (Stable means that if the input is bounded for all time, then the output
is bounded for al time. In this case, clearly the input is bounded since it is zero.) Give an
analytical formulafor z for this model.

5. Experiment with values of the gain parameter. Determine over what range of values the
system is stable.

C.6.3 Independent section

Continuous-time linear state-space models are reasonable for some musical instruments. In this
exercise, we will simulate an idealized and a more redlistic tuning fork, which is a particularly
simpleinstrument to model. The model will betwo-dimensional continuous-time state-space model.

Consider the state and output equations (C.1) and (C.2). Since the modéd is two dimensional, the
state at each time is now a two-dimensional vector. The “initial condition” parameter of the Inte-
grator block in Simulink can be given avector. Set the initial value to the column vector

2(0) = l .] . (C4)

The factor A must be a2 x 2 matrix if the state is a two dimensional column vector. Unfortu-
nately, the Gain block in Simulink cannot be given a matrix parameter. You must replace the Gain
block with the MatrixGain block, aso found inthe “Math” library under “Simulink” in the library
browser.

At first, we will assume there is no input, and we will examine the state response. Thus, we are only
concerned at first with the simplified state equation

z(t) = Az(t). (C.5)
Recall that in chapter 2, equation (2.11) states that the displacement x(t) at time ¢ of atine of the
tuning fork satisfies the differential equation
i(t) = —wiz(t)

where wy is constant that depends on the mass and stiffness of the tine, and and where () denotes
the second derivative with respect to time of x (see box on page51). This does not have the form of
(C.5). However, we can put it in that form using asimple trick. Let

and observe that

360

APPENDIX C. LABORATORY EXERCISES

Thus, we can write (C.5) as

o | E2@) |] a1 a, (1)
i(t) = [i (t) 1 - l a; a;,z] [i(t)]

for suitably chosen constants a; 1, a1 2, a2,1, and ag 2.

Find a1, a1 .2, az 1, and ag » for the tuning fork model.

Use Simulink to plot the state response of the tuning fork when the initial state is given by
(C.4). You will have to pick avalue of wy. Use Simulink to help you find a value of wy so
that the state completes one cycle in 10 time units. Each sample of the state response has two
elements. These represent the displacement and speed, respectively, of the tuning fork tinein
the model. The displacement iswhat directly tranglates into sound.

Change wy so that the state has a frequency of 440 Hz, assuming the time units are seconds.
Change the simulation parameters so that you run the model through 5 complete cycles.

Change the simulation parameters so that you run the model through 1 second. Use the
Simulink To Workspace block to write the result to the workspace, and then use the Matlab
soundsc function to listen to it. Note: You will need to set the sample time parameter of the
To Workspace block to 1/8000. You will also need to specify that the save format should be a
matrix. For your lab report, print your block diagram and annotate it with all the parameters
that have values different from the defaults.

In practice, a tuning fork will not oscillate forever as the model does. We can add damping
by modifying the matrix A. Try replacing the zero value of @ » with —10. What happens to
the sound? This is called damping. Experiment with different values for a; 5. Describe how
the different values affect the sound. Determine (experimentally) for what values of @ > the
system is stable.

A tuning fork is not much of a musical instrument. Its sound is too pure (spectrally). A
guitar string, however, operates on similar principles as the tuning fork, but has a much more
appealing sound.

A tuning fork vibrates with only one mode. A guitar string, however, vibrates with multiple
modes, as illustrated in figure C.5. Each of these vibrations produces a different frequency.
The top one in the figure produces the lowest frequency, called the fundamental, which is
typicaly the frequency of the note being played, such as 440 Hz for A-440. The next mode
produces a component of the sound at twice that frequency, 880 Hz; this component is called
the first harmonic. The third produces three times the frequency, 1320 Hz, and the fourth
produces four times the fundamental, 1760 Hz; these components are the second and third
harmonics.

If the guitar string is undamped, and the fundamental frequency is f Hz, then the the com-
bined sound is a linear combination of the fundamental and the three (or more) harmonics.
This can be written as a continuous-time function y where for al ¢ € Reals,

N
y(t) = Z cksin(2m fit)
k=0

C.6. DIFFERENTIAL EQUATIONS 361

< =
S

<< o< o< <>

Figure C.5: Four modes of vibration of a guitar string.

where N is the number of harmonics and ¢, gives the relative weights of these harmonics.
The values of ¢;, will depend on the guitar construction and how it is played, and affect the
timbre of the sound.

The model you have constructed above generates a damped sinusoid at 440 Hz. Create a
Simulink model that produces a fundamental of 440 Hz plus three harmonics. Experiment
with the amplitudes of the harmonics relative to the fundamental, as well as with the rates
of decay of the four components. Note how the quality of the sound changes. Your report
should include a printout of your model with the parameter values that you have chosen to
get asound like that of a plucked string.

362 APPENDIX C. LABORATORY EXERCISES

I nstructor Verification Sheet for C.6

Name: Date:

1. Vaueof a.

Instructor verification:

2. Plot of the state response.

Instructor verification:

3. Formulafor function z. Verified by differentiating.

Instructor verification:

4. Formulafor function z.

Instructor verification:

5. Range of values for the gain over which the system is stable.

Instructor verification:

C.7. SPECTRUM 363

C.7 Spectrum

The purpose of thislab isto learn to examine the frequency domain content of signals. Two methods
will be used. Thefirst method will beto plot the discrete Fourier series coefficients of finite signals.
The second will be to plot the Fourier series coefficients of finite ssgments of time-varying signals,
creating what is known as a spectrogram.

C.7.1 Background

A finite discrete-time signal with p samples has a discrete-time Fourier series expansion

(p—1)/2
z(n) = Ao+ Z Ay, cos(kwon + ¢r) (C.6)
k=1
for p odd and
p/2
z(n) = Ao+ Z Ay, cos(kwon + o) (C.7)
k=1

for p even, where wy = 27/p.

A finite signal can be considered to be one cycle of a periodic signal with fundamental frequency
wo, in units of radians per sample, or 1/p in Hertz. In this lab, we will assume p is always even,
and we will plot the magnitude of each of the frequency components, |4, - - -, |4, .| for each of
several signals, in order to gain intuition about the meaning of these coefficients.

Notice that each |Ax| gives the amplitude of the sinusoidal component of the signal at frequency
kwy = k2w /p, which has units of radians per sample. In order to interpret these coefficients, you
will probably want to convert these units to Hertz. If the sampling frequency is f samples per
second, then you can do the conversion as follows (see box on pagel51):

(k27 /p)|radiang/sample] f, [sampl es/second]
2n[radians/cycle]

= kfs/p|cyclesd'second]

Thus, each | Ay | gives the amplitude of the sinusoidal component of the signal at frequency & £ /p
Hz.

Note that Matlab does not have any built-in function that directly computes the discrete Fourier
series coefficients. However, it does have a redlization of the fast Fourier transform, a function
caled f f t, which can be used to construct the Fourier series coefficients. In particular, f ouri -
er Ser i es isafunction that returns the DFS coefficients’:

function [magni tude, phase] = fourierSeries(x)
% FOURI ERSERI ES - Return the magni tude and phase of each
% si nusoi dal conponent in the Fourier series expansion for

2This function can be found at http://www.eecs.berkeley.edu/ eal/eecs20/matlab/fourierSeries.m.

364 APPENDIX C. LABORATORY EXERCISES

% the argunent, which is interpreted as one cycle of a

% periodic signal. The argunment is assuned to have an

% even nunber p of sanples. The first returned value is an
% array containing the anplitudes of the sinusoida

% conponents in the Fourier series expansion, with

% frequencies 0, 1/p, 2/p, ... 1/2. The second returned
% value is an array of phases for the sinusoida

% conponents. Both returned values are arrays with | ength
% (p/ 2) +1.

p = length(x);

f =fft(x)/p;

magni tude(1) = abs(f(1));

upper = p/2;

magni t ude(2: upper) 2*abs(f (2: upper));
magni t ude(upper+1) = abs(f (upper+1));

phase(1l) = angle(f(1));

phase(2: upper) angl e(f (2: upper));

phase(upper +1) angl e(f (upper+1));

In particular, if you have an array x with even length,
[A, phi] = fourierSeries(x);

returns the DFS coefficients in a pair of vectors.
To plot the magnitudes of the Fourier series coefficients vs. frequency, you can smply say
p = length(x);
frequencies = [0:fs/p:fs/2];
pl ot (frequencies, A);
x|l abel (" frequency in Hertz');
yl abel (" anpl i tude’);
where f s has been set to the sampling frequency (in samples per second). Theline
frequencies = [0:fs/p:fs/2];
bears further examination. It produces a vector with the same length as A, namely 1 + p/2, where p

isthe length of the x vector. The elements of the vector are the frequencies in Hertz of each Fourier
series component.

C.7.2 In-lab section

1. To get started, consider the signal generated by

C.7. SPECTRUM 365

—
|

= [0: 1/ 8000: 1- 1/ 8000] ;
si n(2% pi *800*t) ;

X
1

This is 8000 samples of an 800 Hz sinusoid sampled at 8 kHz. Listen toit. Usethef ouri -
er Ser i es function as described above to plot the magnitude of its discrete Fourier series
coefficients. Explain the plot.

Consider the continuous-time sinusoid
x(t) = sin(27800t).

The x vector calculated above is 8000 samples of this sinusoid taken at a sample rate of 8
kHz. Notice that the frequency of the sinusoid is the derivative of the argument to the sine
function,

w = i27r800t = 27800
dt

in units of radians per second. Thisfact will be useful below when looking at more interesting
signals.

2. Witht asabove, consider the more interesting waveform generated by
y = sin(2*pi *800*(t.*t));

Thisis called a chirp. Listen to it. Plot its Fourier series coefficients using the f our i -
er Seri es function as described above.

This chirp is 8 kHz samples of the continuous-time waveform
y(t) = sin(27800t2).

Theinstantaneous frequency of thiswaveform is defined to be the derivative of the argument
to the sine function,

d
w(t) = E27r800t2 = 47800¢.
For the given valuest used to compute samples y, what is the range of instantaneous fre-

guencies? Explain how this corresponds with the plot of the Fourier series coefficients, and
how it corresponds with what you hear.

3. The Fourier series coefficients computed in part 2 describe the range of instantaneous fre-
guencies of the chirp pretty well, but they do not describe the dynamics very well. Plot the
Fourier series coefficients for the waveform given by

z = y(8000:-1:1);

Listen to this sound. Doesit sound the same asy ? Does its Fourier series plot look the same?
Why?

366

APPENDIX C. LABORATORY EXERCISES

4. Thechirp signa hasadynamically varying frequency-domain structure. More precisely, there

are certain properties of the signal that change slowly enough that our ears detect them as a
change in the frequency structure of the signal rather than as part of the frequency structure
(the timbre or tonal content). Recall that our ears do not hear sounds below about 30 Hz.
Instead, the human brain hears changes below 30 Hz as variations in the nature of the sound
rather than as frequency domain content. The Fourier series methods used above fail to reflect
this psychoacoustic phenomenon.

A simple fix is the short-time Fourier series. The chirp signals above have 8000 samples,
lasting one second. But since we don’t hear variations below 30 Hz as frequency content, it
probably makes sense to reanayze the chirp signal for frequency content 30 timesin the one
second. This can be done using the following function?

function waterfall Spectrogram(s, fs, sizeofspectra, nunofspectra)

% WATERFALLSPECTROGRAM - Display a 3-D plot of a spectrogram

% of the signal s.

%

% Argunent s:

% s - The signal.

% fs - The sanpling frequency (in sanples per second).

% sizeofspectra - The nunmber of sanples to use to cal cul ate each
% spectrum

% nunofspectra - The nunber of spectra to cal cul ate.

frequencies = [0:fs/sizeofspectra: fs/2];
of fset = floor((length(s)-sizeofspectra)/nunofspectra);
for i=0:(nunofspectra-1)
start = i*offset;
[A, phi] = fourierSeries(s((1+start): (start+sizeofspectra)));
magni tude(:, (i +1)) = A ;
end
wat erfall (frequenci es, 0:(nunofspectra-1), nagnitude');
x| abel (" frequency’);
ylabel ("tine’);
zl abel (" magni tude’);

To invoke this function on the chirp, do

t = [0:1/8000: 1-1/8000];
y = sin(2*pi *800*(t.*t));
wat er f al | Spectrogram(y, 8000, 400, 30);

which yields the plot shown in figure C.6. That plot shows 30 distinct sets of Fourier series
coefficients, each calculated using 400 of the 8000 available samples. Explain how this plot
describes the sound you hear. Create asimilar plot for the reverse chirp, signal z givenin part
3.

3This code can be found at http://www.eecs.berkeley.edu/ eal/eecs20/matlab/waterfal| Spectrogram.m.

apnyubew

368 APPENDIX C. LABORATORY EXERCISES

4000

3500

3000

2500

Frequency
N
o
o
o

1500

1000

500

Time

Figure C.7: Spectrogram of the chirp signal.

5. Figure C.6isreasonably easy to interpret because of therelatively simple structure of the chirp
signal. More interesting signals, however, become very hard to view thisway. An aternative
visualization of the frequency content of such signals isthe spectrogram. A spectrogramisa
plot like that in figure C.6, but looking straight down from above the plot. The height of each
point is depicted by a color (or intensity, in a gray-scale image) rather than by height. You
can generate a spectrogram of the chirp as follows:

specgram(y, 512, 8000) ;

This results in the image shown in figure C.7. There, the default colormap is used, which is
j et . A rendition of this colormap isgivenin figureC.3. You could experiment with different
colormaps for rendering this spectrogram by using the col or nap command. A particularly
useful oneishot , obtained by the command

col ormap(hot) ;
Create asimilar image for the reverse chirp, z, of part 3.

6. A number of audio files are available at

http://ww. eecs. ber kel ey. edu/ " eal / eecs20/ sounds

C.7. SPECTRUM 369

4000 = e S—

3000F

2000

Frequency

R

w

1000F

0 0.5 1 1.5 2 2.5
x 10

Figure C.8: Spectrogram and plot of a voice segment (one of the authors
saying “this is the sound of my voice.”

In Netscape, you can save these to your local computer disk by placing the mouse on the file
name, clicking with the right mouse button, and selecting ” Save Link As” For example, if
you save voi ce. au to your current working directory, then in Matlab you can do

y = auread(’voice.au');

soundsc(y)

subplot(2,1,1); specgramy, 1024, 8000, [], 900)
subplot(2,1,2); plot(y)

to get the result shown in figure C.8. Use this technique to get similar results for other sound
filesin the same directory. Interpret the results.

C.7.3 Independent section
1. For the chirp signal as above,

y = sin(2*pi *800*(t.*t));

370

APPENDIX C. LABORATORY EXERCISES

generate the discrete Fourier series coefficientsusing f our i er Ser i es asexplained in sec-
tion C.7.1. The, write aMatlab function that uses (C.7) to reconstruct the original signa from
the coefficients. Your Matlab function should begin as follows:

function x = reconstruct (nagni tude, phase)

% RECONSTRUCT - G ven a vector of magnitudes and a vector
% of phases, construct a signal that has these magnitudes
% and phases as its discrete Fourier series coefficients.
% The argunents are assuned to have odd length, p/2 + 1,
% and the returned vector will have length p.

Note that this function will require a large number of computations. If your computer is not
up to the task, the construct the Fourier series coefficients for the first 1000 samples instead of
al 8000, and reconstruct the original from those coefficients. To check that the reconstruction
works, subtract your reconstructed signal fromy and examine the difference. The difference
will not be perfectly zero, but it should be very small compared to the origina signal. Plot
the difference signal.

In the remainder of this lab, wewill study beat signals, which are combinations of sinusoidal
signals with closely spaced frequencies. First, we need to develop some background.

Use Euler’s relation to show that
2 cos(wct) cos(wat) = cos((we + wa)t) + cos((we — wa)t).

for any w,, wa, and t in Reals. Hint: See box on page 184.

A conseguence of thisidentity isthat if two sinusoidal signals with different frequencies, w
and wa, are multiplied together, the result is the same as if two sinusoids with two other
frequencies, w. + wa and w. — wa, are added together.

Construct the sum of two cosine waves with frequencies of 790 and 810 Hz. Assume the
sample rate is 8 kHz, and construct a vector in Matlab with 8000 samples. Listen to it.
Describe what you hear. Plot the first 800 samples (1/10 second). Explain how the plot
illustrates what you hear. Explain how the identity in part2 explains the plot.

What is the period of the waveform in part 3? What is the fundamental frequency for its
Fourier series expansion? Plot its discrete Fourier series coefficients (the magnitude only)
using f ouri er Seri es. Plot its spectrogram using specgr am Choose the parameters
of specgr amso that the warble is clearly visible. Which of these two plots best reflects
perception?

C.7. SPECTRUM 371

Instructor Verification Sheet for C.7

Name: Date:

1. Plot of the DFS coefficients of the sinusoid, with explanation.

Instructor verification:

2. Plot of the DFS, plus range of instantaneous frequencies, plus correspondence with the sound.

Instructor verification:

3. Plot of the DFSis the same, yet the sound is different. Explanation.

Instructor verification:

4. Explain how figure C.6 describes the sound you hear. Plot the reverse chirp.

Instructor verification:

5. Create and interpret a spectrogram for one other sound file, at least.

Instructor verification:

372 APPENDIX C. LABORATORY EXERCISES

C.8 Combfilters

The purpose of thislab isto use akind of filter called a comb filter to deeply explore concepts of
impulse response and frequency response.

Thelab uses Simulink, likelab C.6. Unlikelab C.6, it will use Simulink for discrete-time processing.

Be warned that discrete-time processing is not the best part of Simulink, so some operations will be
awkward. Moreover, the blocks in the block libraries that support discrete-time processing are not
well organized. It can be difficult to discover how to do something as simple as an IV-sample delay
or an impulse source. We will identify the blocks you will need.

Thelab is self contained, in the sense that no additional documentation for Simulink is needed. As
in lab C.6, be warned that the on-line documentation is not as good for Simulink asfor Matlab. You
will want to follow our instructions closely, or you are likely to discover very puzzling behavior.

C.8.1 Background

To run Simulink, start Matlab and type si nul i nk at the command prompt. This will open the
Simulink library browser. The library browser is a hierarchical listing of libraries with blocks. The
names of the libraries are (usually) suggestive of the contents, although sometimes blocks are found
in surprising places, and some of the libraries have meaningless names (such as “Simulink”).

Here, we explain some of the techniques you will need to implement the lab. You may wish to skim
these now and return them when you need them.

Simulation Parameters

First, since we will be processing audio signals with a sample rate of 8 kHz, you need to force
Simulink to execute the model as adiscrete-time model with sample rate 8 kHz (recall that Simulink
excels at continuous-time modeling). Open a blank model by clicking on the document icon at the
upper left of the library browser window. Find the Simulation menu in that window, and select Pa-
rameters. Set the parameters so that the window looks like what is shown in figureC.9. Specifically,
set the stop time to 4.0 (seconds), the solver options to “Fixed-step” and “discrete (no continuous
states),” and the fixed step size to 1/8000.

Reading and Writing Audio Signals

Surprisingly, Simulink is more limited and awkward than Matlab in its ability to read and write
audio files. Consequently, the following will seem like more trouble than it is worth. Bear with
us. Simulink only supports Microsoft wave files, which typicaly have the suffix “.wav”. You may
obtain asuitable audio file for thislab at

http://ww. eecs. berkel ey. edu/ " eal / eecs20/ sounds/ voi ce. wav

C.8. COMB FILTERS 373

IT!Simulatiun Parameters: untitled

Salver

Wu:urkspan:el.-"[l| Diagnnstics| HeaI-TimeWDrksth|
Sirmulation time

Start tirme: | 0.0 Stop time: | 410

Solver optionz

Type: |Fi:-:-3|:|-3tep ﬂ ||:Ii3n:rete [ho continuous states) ﬂ

Fized step size: | 148000 Mode: |.-'l'-.ut|:| ﬂ

Clutput options

Ei |

aFk. | Cancel

Help | Apply

Figure C.9: Simulation parameters for discrete-time audio processing in
Simulink.

374 APPENDIX C. LABORATORY EXERCISES

From Wave File

voice —— P simout
(8000Hz/1Ch/8h)

To Workspace
From Wave

File

Figure C.10: Test model for Simulink audio.

In Netscape you can go to
http://ww. eecs. berkel ey. edu/ " eal / eecs20/ sounds/

and then right click on thevoi ce. wav filename to bring up a menu, and choose “Save Link As...”
to save the file to your local disk. It is best to then, in the Matlab command window, to change the
current working directory to the one in which you stored the file using the cd command. This will
make it easier to use thefile.

To make sure we can process audio signals, create the test model shown in figureC.10. To do this,
in anew model window with the ssmulation parameters set as explained in “ Simulation Parameters’
on page 372, create an instance of the block called Fr om Wave Fi | e. Thisblock can befoundin
the library browser under DSP Bl ockset and DSP Sour ces. Set the parameters of that block
to

File nane: voi ce. wav
Sampl es per frane: 1

The first parameter assumes you have set the current working directory to the directory containing
thevoi ce. wav file. The second indicates to Simulink that it should produce audio samples one at
atime, rather than collecting them into vectors to produce many at once.

Next, findthe To Wor kspace block inthe Simulink block library, under Sinks. Create an instance
of that block in your model. Edit its parameters to change the “Save format” to “Matrix”. You can
leave other parameters at their default values.

Connect the blocks as shown in figure C.10.

Assuming the simulation parameters have been set as explained in “ Simulation Parameters’ on page
372, you can now run the model by invoking the Start command under the Simulation menu. This
will result in a new variable called si mout appearing in the Matlab workspace. In the Matlab
command window, do

soundsc(si nmout)

to listen to the voice signal.

Note that the DSP Si nks library has a block called To Wave Devi ce, which in theory will
produce audio directly to the audio device. In practice, however, it seems much easier to usethe To

C.8. COMB FILTERS 375

Figure C.11: Comb filter modeled as a feedback system.

Wor kspace block and the soundsc command. For one thing, soundsc scales the audio signal
automatically. It also circumvents difficulties with real-time performance, platform dependence
problems, and ideosyncrasies with buffering. However, if you wish to try the To WAve Devi ce
block, and can figure out how to get it to work, feel free to useit.

C.8.2 In-lab section

1. Consider the equation
Vnelnts, y(n)=z(n)+ayin—N) (C.8

for some real constant o« < 1 and integer constant N > 0. Assume the sample rate is 8 kHz.
The input is z(n) and the output is y(n). The equation describes an LTI system where the
output is delayed, scaled, and feb back. Such a system is called a comb filter, for reasons
that will become apparent in this lab. The filter can be viewed as a feedback structure, as
shownin figure C.11, where S, isasystem with input y and output z. Give asimilar equation
describing Ss, relating y and =.

2. Implement in Simulink the comb filter from part (). Provide as input the filevoi ce. wav
(see page 372). Send the output to the workspace, just like figureC.10, so that you can use
soundsc to listen to the result. You will probably need the Gai n and Sumblocks, which
you can find in the Simlink, Math library. The delay in the feedback path can be implemented
by the | nt eger Del ay block, which you can find in the DSP Blockset, General DSP,
Signal Operations library.

Experiment with the values of N. Try N = 2000 and N = 50 and describe qualitatively the
difference. With N = 50, the effect is called a sewer pipe effect. Why? Can you relate the
physics of sound in a sewer pipe with our mathematical model? Hint: The speed of sound in
air is approximately

331.5 + 0.6T'meters/second
where T' is the temperature in degress celcius. Thus, at 20 degrees, sound travels at about

343.7 meters/second. A delay of N = 50 samples at an 8 kHz samplerateisequal to thetime
it takes sound to travel roughly 2 meters, twice the diameter of a 1 meter sewer pipe.

376

C.83

APPENDIX C. LABORATORY EXERCISES

Experiment with the value of «. What happens when o = 0? What happens when o« = 1?
When o > 1? You may wish to plot the output in addition to listening to it.

Modify your Simulink model so that its output is the first one second (the first 8001 samples)
of the impulse response of the system defined by (C.8), with & = 0.99 and N = 40.

The simplest approach is to provide an impulse as an input. To do that, use the Di scret e
Pul se CGener at or block, found in the Simulink, Sources. This block can be (sort of)
configured to generate a Kronecker delta function. Set its amplitude to 1, its period to
something longer than the total number of samples (i.e. larger than 8001), its pulse width to
1, its phase delay to 0, and its sample time to 1/8000.

You will also want to change the simulation parameters to execute your system for 1 second
instead of 4.

Listen to theimpulse response. Plot it. Can you identify the tone that you hear? Isit amusical
note? Hint: Over short intervals, asmall fraction of a second, theimpulse responseisroughly
periodic. What is its period?

In the next lab you will modify the comb filter to generate excellent musical sounds resem-
bling plucked strings, such as guitars. As afirst step towards that goal, we can make a much
less mechanical sound than the impulse response by initializing the delay with random data.
Modify your Simulink model so that the comb filter has no input, and instead of an input, the
I nt eger Del ay block isgiven random initial conditions. Use o = 0.99 and N = 40, and
change the parameters of the | nt eger Del ay block so that itsinitial conditions are given

by
randn(1, 40)

The Matlab r andn function returns a vector of random numbers (try hel p randn in the
Matlab command window).

Listen to the result. Compare it to the sound of the impulse response. It should be richer,
and less mechanical, but should have the same tone. It isalso louder (even though soundsc
scales the sound).

Independent section

The comb filter isan LTI system. Figure C.11 is a special case of the feedback system considered
in section 7.5.2, which is shown there to be LTI. Thus, if theinput is

z(n) = Ivm

then the output is

y(n) = H(w)e*"

where H: Reals — Comps is the frequency response. Find the frequency response of the comb
filter. Plot the magnitude of the frequency response over the range O to 4 kHz using Matlab. Why
isit called a comb filter? Explain the connection between the tone that you hear and the frequency
response.

C.8. COMB FILTERS 377

I nstructor Verification Sheet for C.8

Name: Date:

1. Found an equation for S,, relating y and z.

Instructor verification:

2. Constructed Simulink model and obtained both sewer pipe effect and echo effect.

Instructor verification:

3. Constructed the impul se response and identified the tone.

Instructor verification:

4. Created sound with random values in the feedback delay.

Instructor verification:

378 APPENDIX C. LABORATORY EXERCISES

C.9 Plucked string instrument

The purpose of this lab is to experiment with models of a plucked string instrument, using it to
deeply explore concepts of impul se response, frequency response, and spectrograms. The methods
discussed in thislab were invented by Karplus and Strong, and first reported in

K. Karplus and A. Strong, “Digital Sythesis of Plucked-String and Drum Timbres,”
Computer Music Journal, vol. 7, no. 2, pp. 43-55, Summer 1983.

The lab uses Simulink, like lab C.8. It assumes you have understood that lab and the techniques it
usesin detail.

C.9.1 Background

In the previous lab, you constructed in Simulink the feedback system shown in figureC.11, where
So was an N sample delay. In thislab, you will enhance the model by replacing S, with slightly
more complicated filters. These filters will consist of the same NV sample delay in cascade with two
other filters, a lowpass filter and an allpass filter. The objective will be to get truly high-quality
plucked string sounds.

Delays

Recall from example 7.2 that the N sample delay system has frequency response
H(w) = e N,

This same frequency response was obtained in example8.10 by calculating the DTFT of theimpulse
response. Note that the magnitude response is particularly simple,

H(w)| = 1.

Recall that thisis an allpassfilter.

The phase response is
/H(w)=—wN.

The phase response is a linear function of frequency, w, with slope —N. A filter with such a phase
response is said to have linear phase. A delay is particularly simple form of alinear phase filter.
Notice that the amount of delay is the negative of the derivative of the phase response,

d/H(w)

= —N.
dw

Thisfact will be useful when we consider more complicated filters than this simple delay.

C.9. PLUCKED STRING INSTRUMENT 379

Allpass Filters

We will need a dlightly more complicated allpass filter than the NV sample delay. Consider afilter
given by the following difference equation,

Vnelnts y(n)+ay(n—1)=ax(n)+z(n—1) (C.9

for some constant 0 < a < 1. This defines an LTI system, so if the input is z(n) = ¢“", then the
output is H (w)e™™, where H is the frequency response. We can determine the frequency response
using this fact by plugging thisinput and output into (C.9),

H(w)e™™ + aH(w)ei“’(”_l) = qe™n 4 ew(n=1),
This can be rewritten as
H(w)e“™ (1 + ae™™) = e“"(a + e~ ™).
Eliminating e™“™ on both sides we get
H(W)(1+ae™™) =a+e ™.
Solving for H (w) we get ‘
a+e ™

Hw) = St (C.10)

We could immediately proceed to plotting the magnitude and phase response using Matlab, but
instead, we will first manipulate this further to get some insight. Being slightly tricky, we will
multiply top and bottom by ¢/ to get

aeiw/Q _|_€fiw/2

H(w) = ciw/2 1+ ge—iw/2’

Now notice that the top and bottom are complex conjugates of one another. |.e., let

b(w) = ae™/? + ¢~ /2 (C.11)
and note that bw)
w
H(w) = ()

Since the numerator and denominator have the same magnitude,
[H(w)| = 1.

Thefilter is alpass!

The phase response, however, is more complicated. Note that

LH(w) = Lb(w) — Lb"(w).

* For any two complex numbers z and w, note that |z /w| = |z|/|w| and / (z/w) = 7 (z) — /(w).

380 APPENDIX C. LABORATORY EXERCISES

But since for any complex number z, Z(z*) = —/Z(z2),
/H(w) = 2/b(w).

Thus, to find the phase response, we simply need to find /b(w). Plugging Euler’s relation into
(C.11) we get
b(w) = (a+1)cos(w/2) +i(a —1)sin(w/2).

Since the angle of acomplex number z istan—!(Im{z}/Re{z}),

B 1 ((a—1)sin(w/2)
(H(w) = 2tan”" ((a + 1)cos(w/2)> '

Since tan(w) = sin(w)/ cos(w),

a—1

1 tan(w/Q)))

/H(w) = 2tan™! (

a—+

Thisform yields insight for small w. In particular, when w is small (compared to «),

tan(w/2) ~ w/2,

-1
/H(w) ~ 2tan™! <a—w/2> .
a+1
Since 0 < a < 1, the argument to the arctangent is small if w issmall, so for low frequencies,

a—1

LHw) =~ ponr e —dw.
where d is defined by
a—1
= — . .12
d a+1 (€12

Thus, at low frequencies, this allpass filter has linear phase with slope —d. At low frequencies,
therefore, it is an allpass with linear phase, which means that behave exactly like adelay! However,
unlike the N sample delay, the amount of delay is d, which depending on a can be any real number
between 0 and 1. Thus, this allpass filter gives us away to get fractional sample delaysin adiscrete
time system, at least at low frequencies.

C.9.2 In-lab section

1. The lowpass filter we will use is a simple, length two moving average. If the input is = and
the output is y, then the filter is given by the difference equation,

Vnelnts, y(n)=0.5(x(n)+zn-—1)). (C.13)

Find an expression for the frequency response of the lowpass filter given by C.13). Use Mat-
lab to plot the magnitude and phase response over the frequency range 0 to 7 radians/sample.
Isthisalinear phasefilter? If so, what isits delay?

C.9. PLUCKED STRING INSTRUMENT 381

2. In part 4 of the previous lab, you initialized a comb filter with random noise and produced
a sound that reasonably well approximates a plucked string instrument, such as a guitar. We
can improve the sound.

Real instrument sounds have more dynamics in their frequency structure. That is, the spec-
trum of the sound within the first few milliseconds of plucking the string is different from the
spectrum a second or so later. Physically, this is because the high frequency vibrations of the
string die out more rapidly than the low frequency vibrations.

We can approximate this effect by modifying the comb filter by inserting the lowpass filter
given by (C.13) into the feedback loop. This can be accomplished by realizing the following
difference equation:

Vnelnts, y(n)=zmn)+05a(y(n—N)+y(n—N—1)).

Modify your Simulink model you constructed in part 4 of the previous lab so that it uses
a lowpass filter in the feedback loop, implementing this difference equation. Listen to the
resulting sound, and compare it against the sound from the previous lab. Use o = 0.99 and
N = 40, asbefore. Can you hear the improvement?

3. Inthelast Iab, you found that the tone of the sound generated by the comb filter had frequency
8000/N, where N was the delay in the feedback 1oop, and 8000 was the sampling frequency.
You used N = 40 to get a fundamenta frequency of 200 Hz. Now, you have added an
additional lowpass filter, which introduces additional delay in the feedback loop. You have
determined that additional delay in part 1 above. What is the fundamental frequency now?

The comb filter delay can only delay by an integer number of samples. The lowpass filter
introduces a fixed delay. Consequently, there are only certain fundamental frequencies that
are possible. In particular, assuming the sample rate is 8 kHz, is it possible to achieve a
fundamental frequency of 440 Hz? Thiswould be essential to have areasonable guitar model,
since we would certainly want to be able to play the note A-440 on the guitar. Determine the
closest achievable frequency to 440 Hz. Isit close enough? In the independent section of this
lab, you will show how to achieve a fundamental frequency very close to 440 Hz.

C.9.3 Independent section

1. Show analytically that the lowpass filter given by (C.13) has linear phase over the range of
frequencies 0 to 7 radians/sample, and determine the slope. Verify that this agrees with the
plot you constructed in the In-Lab section.

2. In part 2 of the in-lab section, you combined an N-sample delay with a lowpass filter in the
feedback path of a comb filter. Calculate the frequency response of this version of the comb
filter, and plot its magnitude using Matlab over the frequency range 0 to . Compare it to the
frequency response you calculated for the original comb filter in the previous lab. Find the
fundamental frequency of the musical note from this plot and compare it to the answer that
you gave in part 3 of the in-lab portion. Hint: The spectral peaks are very sharp, so you will
need to calculate the magnitude frequency at many points in the range 0 to 7 to be sure to hit
the peaks. We recommend calculating at least 2000 points.

382

APPENDIX C. LABORATORY EXERCISES

3. The reason that the comb filter with a lowpass filter in the feedback loop yields a much

better plucked string sound than the comb filter by itself is that it more accurately models
the physical phenomenon that higher frequency vibrations on the string die out faster than
lower frequency vibrations. Plot the spectrogram using specgr amof the generated sound
to demonstrate this phenomenon, and explain how your spectrogram demonstrates it.

Verify that the frequency response (C.10) of the allpass filter has constant magnitude and
linear phase for low frequencies by plotting it using Matlab. Plot it for the following values of
delay: d = 0.1,0.4,0.7,and1.0. Plot it over the range of frequencies 0 to = radians/sample.
Discuss how your plots support the conclusions about this filter. Hint: Use (C.12) to find a
given d.

You determined in part 3 of the in-lab section that you could not get very close to A-440 with
a comb filter with a lowpass filter in the feedback loop. The allpass filter given by (C.10),

however, can be used to achieve delays that are a fraction of a sample period. Implement
the allpass filter, modifying your Karplus-Strong plucked string model by putting it in the
feedback loop. Set the parameters of the allpass filter and NV to get an A-440. Show your
Simulink diagram, and give the parameters of all the blocks.

C.9. PLUCKED STRING INSTRUMENT 383

I nstructor Verification Sheet for C.9

Name: Date:

1. Magnitude and phase of lowpass filter. Linear phase? Delay?

Instructor verification:

2. Improved plucked string sound.

Instructor verification:

3. Fundamental frequencies that are possible.

Instructor verification:

384 APPENDIX C. LABORATORY EXERCISES

C.10 Modulation and demodulation

The purpose of thislab isto learn to use frequency domain concepts in practical applications. The
application selected here is amplitude modulation (AM), a widely used technique in communi-
cation systems, including of course AM radio, but also ailmost all digital communication systems,
including digital cellular telephones, voiceband data modems, and wireless networking devices. A
secondary purpose of thislab isto gain aworking knowledge of the fast Fourier transform (FFT)
algorithm, and an introductory working knowledge of filter design. Note that this lab requires the
Signal Processing Toolbox of Matlab for filter design.

C.10.1 Background
Amplitude M odulation

The problem addressed by AM modulation is that we wish to convey a signal from one point in
physical space to another through some channel. The channel has certain constraints, and in partic-
ular, can typically only pass frequencies within a certain range. An AM radio station, for example,
might be constrained by government regulators to broadcast only radio signals in the range of 720
kHz to 760 kHz, abandwidth of 40 kHz.

The problem, of course, is that the radio station has no interest in broadcasting signals that only
contain frequencies in the range 720 kHz to 760 kHz. They are more likely to want to transmit a
voice signal, for example, which contains frequencies in the range of about 50 Hz to about 10 kHz.
AM modulation deals with this mismatch by modulating the voice signal so that it is shifted to the
appropriate frequency range. A radio receiver, of course, must demodulate the signal, since 720
kHz is well above the hearing range of humans.

In this lab, we present a somewhat artificial scenario in order to maximize the experience. We will
keep al frequencies that we work with within the audio range so that you can listen to any signal.
Therefore, we will not modulate a signal up to 720 kHz (you would not be able to hear the result).
Instead, we present the following scenario:

Assume we have asignal that contains frequencies in the range of about 100 to 300 Hz,
and we have a channel that can pass frequencies from 700 to 1300 Hz> Our task will
be to modulate the first signal so that it lies entirely within the channel passband, and
then to demodulate to recover the original signal.

AM modulation is studied in detail in exercise5 of chapter 9. In that problem, you showed that if
y(t) = z(t) cos(wet),

thenthe CTFT is
Y(w)=Xw—-we)/2+ X(w+w)/2.

®Since Fourier transforms of real signals are symmetric, the signal also contains frequenciesin the range -100 to -300
Hz, and the channel passes frequencies in the range -700 to -1300 Hz.

C.10. MODULATION AND DEMODULATION 385

In this lab, we will get a similar result experimentaly, but working entirely with discrete-time
signals, and staying entirely within the audio range so that we can hear (and not just plot) the
results.

TheFFT Algorithm

In order to understand AM modulation, we need to be able to calculate and examine Fourier trans-
forms. We will do this numericaly in this lab, unlike exercise5 of chapter 9, where it is done
analyticaly.

In lab C.7, we used a supplied function called f our i er Ser i es to calculate the Fourier series
coefficients A, and ¢, for signals. Inthislab, wewill usethe built-in functionf f t , whichisused, in
fact, by thef our i er Ser i es function. Learning to usethe FFT isextremely valuable; it iswidely
used all analytical fields that involve time series analysis, including not just all of engineering, but
also the natural sciences and social sciences. The FFT is also widely abused by practitioners who
do not really understand what it does.

The FFT agorithm operates most efficiently on finite signals whose lengths are a power of 2. Thus,
in this lab, we will work with what might seem like a peculiar signal length, 8192. Thisis 23. At
an 8 kHz sample rate, it corresponds to slightly more than one second of sound.

Recall that a periodic discrete-time signal with period p has adiscrete-time Fourier series expansion

(p-1)/2
a(n) =Ag+ > Agcos(kwon + o) (C.14)
k=1
for p odd and
p/2
z(n) = Ao+ Z Ay, cos(kwon + o) (C.15)
k=1

for p even, where wy = 27/p, the fundamental frequency in cycles per sample. Recall further that
we can aternatively write the Fourier series expansion in terms of complex exponentials,

p
z(n) = Z X etkwon (C.16)
k=0

Note that this sum covers one cycle of the periodic signal. If what we haveis afinite signal instead
of aperiodic signal, then we can interpret the finite signal as being one cycle of aperiodic signal.

In chapter 9, we describe four Fourier transforms. The only one of these that is computable on a
computer is the DFT, or discrete Fourier transform. For a periodic discrete-time signal x with
period p, we have the inver se DFT, which takes us from the frequency domain to the time domain,

152,
Vnelnts, z(n)=- ZX,’CeZk“’O”, (C.17)
P =0

386 APPENDIX C. LABORATORY EXERCISES

and the DFT, which takes us from the time domain to the frequency domain,

p—1
Vkelnts, X =Y x(m)e "o, (C.18)

m=0

Comparing (C.17) and (C.16), we see that the DFT yields coefficients that are just scaled versions
of the Fourier series coefficients. This scaling is conventional.

Inlab C.7 we calculated Ay, and ¢. In this lab, we will calculate X;. This can be done using
(C.18). The FFT agorithm is simply a computationally efficient algorithm for calculating C.18).

In Matlab, you will collect 8192 samples of asignal into a vector and then invoke thef f t function.
Invoke hel p fft to verify that thisfunction isthe right one to use. If your 8192 samples arein a
vector x, thenf f t (x) will return avector with 8192 complex number, representing Xy, ..., Xg191.

From (C.18) it is easy to verify that X, = X, for all integers k£ (see part 1 of the in-lab section
below). Thus, the DFT X is a periodic, discrete function with period p. If you have the vector
fft(x),representing Xg, ..., Xg191, you know all X. For example,

X1 =X 148192 = Xg101

From C.17, you can see that each X, scales acomplex exponential component at frequency kuy =
k2x /p, which has units of samples per second. In order to interpret the DFT coefficients X, you
will probably want to convert the frequency units to Hertz. If the sampling frequency is £ samples
per second, then you can do the conversion as follows (see box on pagel51):

(k27 /p)|radiang/sample] f, [samples/second]
2n[radians/cycle]

= kf5/p[cycles/second| (C.19

Thus, each X, gives the DFT value at frequency & f; /p Hz. For our choices of numbers, f; = 8000
and p = 8192, so X}, givesthe DFT value at frequency k£ x 0.9766 Hz.

Filtering in Matlab

Thefi | t er function can compute the output of an LTI system given by a difference equation of
the form

a1y(n) = bix(n)+byx(n—1)+- - -+byr(n—N+1)—asy(n—1)—...—apy(n—M+1). (C.20)
To find the output vy, first collect the (finite) signal = into a vector. Then collect the coefficients
ai,---,ay intoavector A of length v, and the coefficients b, - - - , by, into avector B of length M.
Then just do

y =filter(B, A Xx);

C.10. MODULATION AND DEMODULATION 387

0.6 0} 4

0.4n n

ol WTTTTTTTTW???‘W@@@@@oooooo

Mliil&%&&&émmwo@@@@
-0.2 ll *
04} .
(0]
_0.67 O -
O
-0.8F| | © -
0]
o Il Il Il Il Il Il Il Il Il
_10 10 20 30 40 50 60 70 80 90 100

Figure C.12: Impulse response of a simple filter.

Example 3.1: Consider the difference equation
y(n) = z(n) —0.95y(n — 1).

We can find and plot the first 100 samples of the impul se response by letting the vector
x beanimpulseand usingfi | t er to calculate the output:

x =[1, zeros(1,99)];
y filter([1], [1, 0.95], x);
sten(y);

which yields the plot shown in C.12. The natural question that arises next is how to
decide on the values of B and A. Thisis addressed next.

Filter Design in Matlab

The signal processing toolbox of Matlab provides a set of useful functions that return filter coeffi-
cients A and B given a specification of adesired frequency response. For example, suppose we have
asignal sampled at 8 kHz and we wish to design afilter that passes all frequency components bel ow
1 kHz and removes all frequency components above that. The following Matlab command designs
afilter that approximates this specification:

388 APPENDIX C. LABORATORY EXERCISES

14

passband

[
%]
é 08k /- cutoff frequency ,
¢
Q
©
2
5061 1
g transition band
——
0.4 1
stopband
0.2 < >
0 | | L | |
0 500 1000 1500 2000 2500 3000 3500 4000

frequency

Figure C.13: Frequency response of a 10-th order Butterworth lowpass fil-
ter.

[B, Al = butter(10, 0.25);

The first argument, called the filter order, gives M and N in (C.20) (a constraint of the but t er

functionisthat M = N). The second argument gives the cutoff frequency of thefilter asafraction
of half the sampling frequency. Thus, in the above, the cutoff frequency is0.25 x (8000/2) = 1000
Hertz. The cutoff frequency is by definition the point at which the magnitude response is 1A/2.

Thereturned arrays B and A are the argumentsto supply tof i | t er to calculate the filter output.

The frequency response of thisfilter can be plotted using the f r eqz function as follows:

[HW = freqz(B, A 512);

pl ot (W (4000/pi), abs(H));

x|l abel (" frequency’);

yl abel (’ magni t ude response’);

which yields the plot shown in figure C.13. (The argument 512 specifies how many samples of the
continuous frequency response we wish to calculate.)

Thisfrequency response bears further study. Notice that the response transitions gradually from the
passband to the stopband. An abrupt transition is not implementable. The width of the transition

C.10. MODULATION AND DEMODULATION 389

0.3 T T T T T T T T T

0.25F A

0.2 A

0.15F A

0.1 A

0.05F 1

-0.05

T

-0.1 Il Il Il Il Il Il Il Il Il

Figure C.14: Impulse response of a 10-th order Butterworth lowpass filter.

band can be reduced by using an order higher than 10 in the but t er function, or by designing
more sophisticated filtersusing thecheby1, cheby?2,orel | i p functionsin the signal processing
toolbox. The Butterworth filter returned by but t er , however, will be adequate for our purposesin
this lab.

Using ahigher order to get anarrower transition band can be an expensive proposition. The function
filter works by implementing the difference equation (C.20). As M and N get larger, each
output sample y(n) requires more computation.

The first 50 samples of the impulse response of the filter can be plotted using the following Matlab
code:

X =[1, zeros(1,49)];
y = filter(B, A x);
stemy);

Thisyields the plot shown in figure C.14.

390 APPENDIX C. LABORATORY EXERCISES
C.10.2 In-lab section

1. Use(C.18) to show that X; = X; . for al integers k. Also, show that the DFT is conjugate
symmetric, i.e. X; = (X’ ,)* for al integers k, assuming z(n) isreal for al integers n.

2. In part 2 of the in-lab portion of lab C.7, we studied a chirp signal. We will use a similar
signal here, athough it will vary over a narrower range of frequencies. Construct the signal x
given by:

t
X

[0: 1/ 8000: 8191/ 8000] ;
Si n(2*pi *100*t + 2*pi *100*(t.*t));

Thisisachirp that varies from about 100 Hz to about 300 Hz. Listen to it. Calculate its DFT
using thef f t function, and plot the magnitude of the DFT. Construct your plot in such away
that your horizontal axisis labeled in Hertz, not in the index k of X;. The horizontal axis
should vary in frequency from 0 to 8000 Hz.

3. Your plot from part 2 should show frequency components in the range 100 Hz to 300 Hz, but
in addition, it shows frequency components in the range 7700 to 7900. These extra compo-
nents are the potentially the most confusing aspect of the DFT, but in fact, they are completely
predictable from the mathematical properties of the DFT.

Recall that the DFT of areal signal is conjugate symmetric. Thus,
[X5l = XL

Thus, if there are frequency components in the range 100 to 300 Hz, then there should also
be frequency components with the same magnitude in the range -100 to -300 Hz. These do
not show up on your plot simply because you have not plotted the frequency components at
negative frequencies.

Recall that the DFT is periodic with period p. That is, X;, = X, for all integers k. Recall
from (C.19) that the £ — th DFT coefficient represents a frequency component at % f; /p
Hertz, where f, is the sampling frequency, 8000 Hertz. Thus, a frequency component at
some frequency f must be identical to a frequency component at f + f;. Therefore, the
components in the range -100 to -300 Hertz must be identical to the components in the range
7700 to 7900 Hertz! The image we are seeing in that latter range is a consequence of the
conjugate symmetry and periodicity of the DFT!

Since the DFT is periodic with period 8000 Hertz (when using units of Hertz), it possibly
makes more sense to plot its values in the range -4000 to 4000 Hertz, rather than O to 8000
Hertz. This way, we can see the symmetry. Since the DFT gives the weights of complex
exponential components, the symmetry isintuitive, because it takes two complex exponentials
with frequencies that are negatives of one another to yield areal-valued sinusoid.

Manipulate the result of the f f t function to yield a plot of the DFT of the chirp where the
horizontal axisis -4000 to 4000 Hertz. It is not essential to include both endpoints, at -4000
and at 4000 Hertz, since they are constrained to be identical anyway by periodicity.

C.10. MODULATION AND DEMODULATION 391

C.10.3 Independent section

1. For the chirp signal as above, multiply it by a sine wave with frequency 1 kHz, and plot the
magnitude of the DFT of the result over the frequency range -4000 to 4000 Hz. Verify that
the resulting signal will get through the channel described in the scenario on page384. Listen
to the modulated chirp. Does what you hear correspond with what you see in the DFT plot?

2. The modulated chirp signal constructed in the previous part can be demodulated by multiply-
ing it again by a sine wave with frequency 1 kHz. Form that product, and plot the magnitude
of the DFT of the result over the frequency range -4000 to 4000 Hz. How does the result
differ from the original chip? Listen to the resulting signal. Would this be an acceptable
demodulation by itself?

3. Usethebut t er function to design afilter that will process the result of the previous part so
that it more closely resembles the original signal. You should be able to get very close with a
modest filter order (say, 5). Filter the result of the previous part, listen to the result, and plot
the magnitude of its DFT in the frequency range -4000 to 4000 Hz.

The modulation and demodulation method you have just implemented is similar to what is
used many communication systems. A number of practical problems have to be overcomein
practice, however. For example, the receiver usualy does not know the exact frequency and
phase of the carrier signal, and hence it has to somehow infer this frequency and phase from
the signal itself. One technique is to simply include the carrier in the modulated signal by
adding it in. Instead of transmitting

we can transmit
y(t) = (1 + x(t)) cos(wet),

in which case, the transmitted signal will contain the carrier itself. This can be used for
demodulation. Anocther technique is to construct a phase locked loop, a clever device that
extractsthe carrier from the transmitted signal without it being explicitly present. This method
isused in digital transmission schemes. The details, however, must be left to amore advanced
text.

In the scheme we have just implemented, the amplitude of a carrier wave is modulated to
carry asignal. It turns out that we can also vary the phase of the carrier to carry additional
information. Such AM-PM methods are used extensively in digital transmission. These
methods make more efficient use of precious radio bandwidth than AM aone.

392 APPENDIX C. LABORATORY EXERCISES

I nstructor Verification Sheet for C.10

Name: Date:

1. Verify periodicity and conjugate symmetry of the DFT.

Instructor verification:

2. Plot of the magnitude of the DFT, correctly labeled, from 0 to 8000 Hz.

Instructor verification:

3. Plot of the magnitude of the DFT, correctly labeled, from -4000 to 4000 Hz.

Instructor verification:

C.11. SAMPLING AND ALIASING 393
C.11 Sampling and aliasing

The purpose of this lab is to study the relationship between discrete-time and continuous-time
signals by examining sampling and aiasing. Of course, a computer cannot directly deal with
continuous-time signals. So instead, we will construct discrete-time signals that are defined as
samples of continuous-time signals, and then operate entirely on them, downsampling them to get
new signals with lower sample rates, and upsampling them to get signals with higher sample rates.

Note that this lab has no independent part. Therefore, no lab writeup needs to be turned in. The
instructor verification sheet is sufficient.

C.11.1 In-lab section

1. Recall fromlab C.7 that achirp signal given by
z(t) = sin(27 ft?)

has instantaneous frequency

d
%Qﬂ'ftz =4r ft

in radians per second, or

2ft
in Hertz. A sampled signal y = Sampler,-(z) with sampling interval 7" will be
y(n) = sin(27 f(nT)?).
Create in Matlab a chirp sampled at 8 kHz that lasts 10 seconds and sweeps from frequency
0Oto 12 kHz. Listen to the chirp. Explain the aliasing artifacts that you hear.

2. For the remainder of this lab, we will work with aparticular chirp signal that has a convenient
Fourier transform for visualizing and hearing aliasing effects. For efficient computation using
the FFT algorithm, wewill work with 8192 = 2'3 samples, giving slightly more than 1 second
of sound at an 8 kHz sample rate. You may wish to review lab C.10, which explains how to
create well-labeled plots of the DFT of afinite signal using the FFT algorithm.

The chirp signal we wish to create is given by
Vte[0,D], x(t)= f(t)sin(2nft?)

where D isthe duration of the signal and f(¢) is atime-varying amplitude given by

f(t) =1=1t=D/2[/(D/2).

This chirp starts with amplitude 0, rising linearly to peak at the midpoint of the duration, and
then falls again back to zero, as shown in figureC.15. Thus, it has atriangular envel ope.

Generate such a chirp that lasts for 8192 samples at an 8 kHz sample rate and sweeps from a
frequency of zero to 2500 Hz. Listen to the resulting sound. Are there any aliasing artifacts?
Why or why not?

394 APPENDIX C. LABORATORY EXERCISES

0.6 ,

0.4 n

0.2 ,

-1 I I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

Figure C.15: Chirp signal with a triangular envelope.

C.11. SAMPLINGAND ALIASING 395

3. Use the FFT algorithm, as done in lab C.10, to create a plot of the magnitude of the DFT
of the chirp signa from the previous part over the frequency range —4 kHz to 4 kHz. Make
sure the horizontal axis of your plot islabeled in Hertz. Does your plot look like a sensible
frequency-domain representation of this chirp?

4. Modify your chirp so that it sweeps from 0 to 5 kHz. Listen to it. Do you hear aliasing
artifacts? Plot the magnitude of the DFT over —4 kHz to 4 kHz. Can you see the aliasing
artifacts in this plot? Explain why the plot has the shape that it does.

5. Return to the chirp that you generated in part 2, which sweeps from 0 to 2500 Hz. Create a
new signal with sample rate 4 kHz by downsampling that chirp. That is, create a vector in
Matlab that has half the length by selecting every second sample from the original chirp. I.e,,
if y(n) isthe original chirp, define w by

w(n) = y(2n).

Now plot the magnitude DFT of this signal ® Since the sampling rate is lower by a factor of
2, you should plot over the frequency interval -2 kHz to 2 kHz. Is there aliasing distortion?
Why?

6. Return again to the chirp that you generated in part 2, which sweeps from 0 to 2500 Hz.
Create a new signal with sample rate 16 kHz by upsampling that chirp. That is, create a
vector in Matlab that has twice the length by inserting zero-valued samples between each pair
of samples from the original chirp. l.e., if y(n) isthe original chirp, define z by

_J y(n/2) ifniseven
2(n) = 0 otherwise

Now plot the magnitude DFT of this signal. Since the sampling rate is higher by afactor of
2, you should plot over the frequency interval -8 kHz to 8 kHz. Explain this plot. Listen to
the sound by giving a sampling frequency argument to soundsc as follows?

soundsc(w, 16000);

How does the sound correspond with the plot?

7. Design a Butterworth filter using the but t er function in Matlab to get back a high quality
rendition of the original chirp, but with asample rate of 16000 Hz. Filter the signal with your
filter and listen to it.

Note that this technique is used in most compact disc players today. The signal on the CD
is sampled at 44,100 Hz. The CD player first upsamples it by a factor of 4 or 8 to get a
sample rate of 176,400 Hz or 352,800 Hz. The upsampling is accomplished by inserting

Unfortunately, Matlab does not document what actually happens when you give a sampling frequency of 4000 to the
sound or soundsc functions. On at least some computers, the sound that results from attempting to do thisis difficult
to interpret. Thus, we do not recommend attempting to listen to this downsampled chirp.

"The audio hardware on many computers directly supports a sample rate of 16 kHz, so at least on such computers,
Matlab seems to correctly handle this command.

396

APPENDIX C. LABORATORY EXERCISES

zero-valued samples. The resulting signal is then digitally filtered to get a high sample rate
and accurate rendition of the audio. The higher sample rate signal is then converted to a
continuous-time signal by adigital to analog converter that operates at the higher sample rate.
This technique shifts most of the difficulty of rendering a high-quality audio signal to the
discrete-time domain, where it can be done with digital circuits or microprocessors (such as
programmable DSPs) rather than with analog circuits.

C.11. SAMPLINGAND ALIASING 397

I nstructor Verification Sheet for C.11

Name: Date:

1. Explain the diasing artifacts that you hear.

Instructor verification:

2. Generate chirp with triangular envelope.

Instructor verification:

3. Generate a frequency-domain plot of the chirp with atriangular envelope.

Instructor verification:

4. Show afrequency-domain plot with aiasing distortion and explain the distortion.

Instructor verification:

5. Show afrequency-domain plot with aliasing distortion and explain the distortion.

Instructor verification:

6. Show afrequency-domain plot with adouble chirp and explain the sound.

Instructor verification:

7. Give areasonable filter design.

Instructor verification:

398 APPENDIX C. LABORATORY EXERCISES

| ndex

(+,-), 290
(+,+], 290
=, 286
D, 176, 209
Rightarrow, 221
Xe¢, 291
[-,-), 290
[-,-], 290
11, 296
=, 304
Ng, 305
Ny, 306
/, 317
N, 291
..., 285

0,43

U, 291

3, 290, 304

Vv, 38, 289

€, 286

=, 74, 292

¢, 286

—, 302

\, 291

C, 291

x, 312

x, 293

Vv, 291

A, 58, 291
{--},286

re'? 317

z*, 314

(1), 203

|, 288

* 137, 208

*, 328

X command in Matlab, 337

399

.=, 287
==, 287

abs, 38

abs command in Matlab, 320
absent, 73

absolute value, 38
abstraction, 75, 79, 84
abstraction relations, 75
acoustic environment, 205
adaptive equalizer, 31
adders, 237

Adaobe Photoshop, 206
ADSL, 27

affine, 132

air pressure, 3

aleph, 305

Alexander Graham Béll, 229
algorithm, 47

aliasing, 268, 269, 393
aliasing distortion, 279
allpass filter, 187, 378
AltVideo, 10

AM, 263, 384

AM-PM, 391

amplitude, 5, 185, 311

amplitude modulation, 263, 384

analog signal, 18
anaog video, 10
and, 291

angle, 317

angle command in Matlab, 320
answering machine, 69
antenna arrays, 24
aperiodic signals, 167

application-specific integrated circuit, 106

arcs, 69

400

arg, 317

argument, 317

array, 129

arrows, 56, 69

ASIC, 106

assembly language, 236
assertion, 286
assignment, 286
assignment rule, 37

at rest, 131

audio, 2, 29

audio equalizer, 19
audio files, 368

audio signals, 48

audio system, 205

axis image command in Matlab, 334

Bach, 154

bandlimiting filter, 29

bandwidth, 384

base station, 23

batteries, 23

beams, 24

beat signals, 370

behavior, 52, 82, 88

Behaviors, 82

bel, 229

Bell Telephone Labs, 229

Bell, Alexander Graham, 229

Bin, 13, 291

bisimilar, 87

bisimulation, 84, 87

bit pipe, 28

bits per second, 18

BitSream, 45

BitSreams, 45

block diagram languages, 323

block diagrams, 56, 356

blurred images, 206

bottom, 113

break command in Matlab, 344

bubble, 69

butter command in Matlab, 232, 388, 389, 391,
395

Butterworth, 232

INDEX

Butterworth filter, 389

cable, 22

cardinality, 305

carrier frequency, 263

Cartesian, 316

Cartesian coordinates, 317
cascade composition, 57, 100, 110
causal, 67, 220

causality loop, 114, 117

CD, 4, 29

cd command in Matlab, 334, 341, 374
CD ROM, 30

cdl array, 340

cel array in Matlab, 347

cdl arraysin Matlab, 347

cells, 23

cellular telephones, 23

channel, 206, 384

Char, 291

Char*, 291

chebyl command in Matlab, 232, 388
cheby2 command in Matlab, 232, 388
Chebyshev 1, 232

Chebyshev 2, 232

chirp, 365, 390, 393

choosg, 293

circle of fifths, 154

circuit analysis, 180

circular buffering, 235

class, 235

closed, 291

closed-loop, 197

closed-loop controller, 347, 350
coaxia cable, 22

codec, 19

coder, 19

CodeRecognizer, 76

codomain, 41, 302

color, 8

color separations, 337
ColorComputerimage, 9
Colorlmage, 8

colormap, 9, 43

colormap command in Matlab, 334, 368

INDEX

Colormaplmage, 43

Colormaplmages, 35

ColorMaplndexes, 9

colormaps, 332

column vector, 138, 326, 352

columns, 326

comb filter, 375

combinations, 293

comments in Matlab, 342

communication systems, 180

communications, 29, 149

commutativity, 208

compact disc, 4, 29, 269, 395

compiled language, 324

complement, 291

complex amplitude, 185

complex command in Matlab, 320

complex conjugate, 38, 314

complex exponentials, 180

complex number, 313

complex numbers, 311

complex systems, 178

complex-valued functions, 178

components, 294

composition, 43, 57

compression ratio, 335

Comps, 290

computer graphics, 149

Computerimage, 9

Computer\oice, 4

conj, 38

conj command in Matlab, 320

conjugate, 38

conjugate symmetric, 186

conjugate symmetry, 186, 218, 254, 255

conjunction, 291

connection restriction, 43, 58

constructor, 235

continuous-time Fourier series, 246

continuous-time Fourier transform, 219, 245,

251

continuous-time signals, 4, 14, 53, 246

continuous-time state-space model, 144

continuous-time systems, 53, 145
simulating, 356

401

continuum, 306
ContPeriodic,, 246

control, 19, 345, 347

control logic, 65

control signal, 146

control systems, 180
controllability, 146

controller, 19

controllers, 149

ContSgnals, 53, 245

conv command in Matlab, 234
convergence of the Fourier series, 164
convolution, 143, 206
convolution integral, 210
convolution sum, 208
coordinates, 294

copper, 22

correctness, 48

critical path, 98

crosstalk, 29

CTFT, 219, 245, 251

current directory in Matlab, 341
cutoff frequency, 232, 388
cycles per second, 5, 151

D., 176, 209

damping, 360

DAT, 30

Data, 13

data, 13

data sequences, 13

dB, 227, 229

DC, 158

de Morgan'srules, 293
decaying exponential, 329
decibels, 227, 229

decision logic, 65
declarative, 1, 38, 46, 149, 206, 323
decoder, 19, 103

decryption, 19

degree, 311

degrees, 155

delay, 60, 176, 182, 183, 256
delay line, 234, 237
deltafunctions, 211

402

demo command in Matlab, 326
demodulation, 263

denumerable, 306

destructive interference, 170, 171
detection, 19

deterministic, 78

deterministic state machines, 72
DFS, 169, 190, 247

DFS coefficients, 193

DFT, 249, 385, 386

difference equation, 230
difference equations, 54, 175
differential equation, 50
differential equations, 53, 145, 175, 356
differential precoder, 103

digital audio, 29

digital audio tape, 30

digital circuits, 98

digital signal, 18

digita telephony, 18

digital to analog converter, 396
digital video discs, 30

dimension, 127, 138

Dirac deltafunction, 211

Dirac delta functions, 278

direct current, 158

direct form 1, 238

direct form 2, 239

DiscPeriodic,, 246

discrete complex exponential, 182
discrete Fourier series coefficients, 363
discrete Fourier transform, 249, 385

Discrete Pulse Generator in Simulink, 376

discrete to continuous conversion, 273

discrete-time Fourier series, 169, 190, 247

finite signals, 363

discrete-time Fourier transform, 217, 245, 250

discrete-time signals, 4, 15, 54, 167
discrete-time systems, 54, 131
DiscreteHorizontal Space, 9
DiscreteTime, 4

DiscreteVertical Space, 9
DiscSgnals, 54, 246

DiscToCont, 273

digunction, 291

disp command in Matlab, 342
Display, 9

distortion, 19, 206

domain, 41, 302

domain name server, 42

don’'t care, 106

double, 46

Doubles, 46

downsampling, 395

DSL, 27

DSP Blockset in Simulink, 374
DSP Sinksin Simulink, 374
DSP Sourcesin Simulink, 374
DSP toolbox, 224

DTFT, 217, 245, 250

DTMF, 26

duality, 266

dummy variable, 289

DvD, 30

eigenfunction, 180

electrica power, 7
electromagnetic waves, 152
elements, 285

ellip command in Matlab, 232, 388
ellipsis, 285

dliptic, 232

ese, 72

dsearc, 72

embedded system, 98
embedded systems, 236
empty sequence, 294
Encoder, 45

encoder, 19, 103

encryption, 19, 28
EnglishText, 13

EnglishWords, 13

enhance, 19

envelope, 329

Equal, 76

equalizer, 206

equivalence of state machines, 84
equivalence relations, 75
estimation, 149

Euler's formula, 184, 315, 321

INDEX

INDEX

event stream, 13, 14
event streams, 65
EventSet, 14
EventSream, 14
exchanging integral and summation, 195
existential quantification, 290
exists, 304
Exp, 15
exp, 315
exp, 38
exp command in Matlab, 320
exponential, 38

complex numbers, 38
exponential envelope, 329

factoring polynomials, 311

false assertion, 287

fast Fourier transform, 169, 250, 363, 384
feedback, 59, 110, 237

feedback control system, 31

FFT, 169, 250, 384, 386, 393

fft command in Matlab, 363, 385, 386, 390
fifth, 154

File, 13

filter, 205

filter coefficients, 230

filter command in Matlab, 234, 386-389
filter design, 234, 384

filter implementation, 234

filter order, 388

filtering, 175, 196

finite, 170

finite Fourier series approximation, 160
finite impulse response, 220

finite impulse response system, 142
finite signal, 157

finite signals, 363

finite state machine, 69

FIR, 142, 220

first harmonic, 360

first-order hold, 275

fixed point, 59, 110, 113

floor function in Matlab, 349

focus, 206

for all, 38

403

for command in Matlab, 327
forking, 107
Fourier series, 158, 190, 363
Fourier series coefficients, 193, 246
Fourier series expansion, 160
Fourier transform, 219, 248, 251
Fourier transforms, 245
Fourier, Joseph, 158
fourierSeries command in Matlab, 363
fourth-power law, 23
frames, 10
FrameTimes, 10
frequency, 5, 185
frequency domain, 149, 160, 363
frequency response, 56, 175, 181, 182, 217,
376

fregz command in Matlab, 388
From Wave Filein Simulink, 374
FSM, 69
FT, 219, 251
full duplex, 28
function command in Matlab, 342
function composition, 43
function spaces, 20
functions, 39, 302

in Matlab, 47
functions of time, 176
fundamental, 153, 360
fundamental frequency, 158

gain, 187, 227

Gain block in Simulink, 357
Gainin Simulink, 375

gcd, 163

geosynchronous, 29
getframe command in Matlab, 337
GHz, 152

Gibb's phenomenon, 160
gigahertz, 152

global variable, 336

graph, 39

graphics, 149

grayscale, 5

grayscale colormap, 334
greatest common divisor, 163

404

ground wire, 7
guard, 69
guitar string, 360

hand off, 23

hardware, 237

harmonic, 360

harmonic motion, 51
harmonics, 153, 160

help command in Matlab, 326
Hertz, 5, 151

hertz, 152

hierarchical composition, 108
high fidelity, 205

highpass, 206

Horizontal Space, 8
hostnames, 42

hot command in Matlab, 368
hot wires, 7

household electrical power, 7
human ear, 205

Hz, 5, 151, 152

1, 312
i command in Matlab, 320
ideal interpolation, 275
|dealInterpolator, 275

textbf, 277
identities, 55
identity, 147, 222, 244, 316
identity matrix, 139
if command in Matlab, 338
IR, 137, 220, 230
ill formed, 111
Im{z}, 313
imag command in Matlab, 320
Image, 8
image command in Matlab, 332, 334, 336
Image processing, 149
image understanding, 149, 338
images, 5, 332

in Matlab, 332

sinusoidal, 333
ImageSet, 10, 20
imaginary axis, 317
imaginary numbers, 312

INDEX

imaginary part, 313
imfinfo command in Matlab, 334
imperative, 1, 42, 46, 65, 149, 206, 323
imperative programming languages, 323
implementation of filters, 234
impulse, 137, 328
impulse response, 137, 141, 214, 215
ImpulseGen, 275
impulses, 211
imread command in Matlab, 335
inlab, 324
incomparable, 117
independent, 324
Indices, 14
induction, 135
infinite impulse response, 137, 220, 230
infinite sequence, 304
infinite sequences, 294
initial rest condition, 136
initial state, 66, 72
input alphabet, 66
input command in Matlab, 344
input signal, 56
input signals, 66
Inputs, 66
instantaneous frequency, 365, 393
instantaneous reactions, 98
Integer Delay in Simulink, 375, 376
Integrator block in Simulink, 357, 359
Intensity, 8
intensity, 156
interlaced, 10
International Telecommunication Union, 30
Internet, 20
sound, 19
Internet telephony, 29
interpolating, 267
interpreted languages, 324
intersection, 291
Ints, 2, 290
Ints;, 290
Intsl6, 3
inverse DFT, 385
inverse Fourier transform, 248
inverses, 247

INDEX 405

IP address, 42 m-file, 341
Iridium, 24 m-files, 341
ISDN, 27 mac, 236
ITU, 30 magnitude, 314
magnitude response, 187
4,312 major triad, 150, 163
j command in Matlab, 320 Maple, 48
Java, 46, 47, 235 marginaly stable, 353
jet command in Matlab, 368 marginally stable systems, 352
JPEG, 335 Mathematica, 48
Matlab, 47, 56, 323
Karplus-Strong algorithm, 378 *, 337
key, 154 abs, 320
kHz, 152 angle, 320
kilohertz, 152 axis image, 334
Kronecker delta function, 137, 211 break, 344
creating in Simulink, 376 butter, 232, 388, 389, 391, 395
cd, 334, 341, 374
I"Hopital’s rule, 48 cell array, 347
least fixed point, 117 cell arrays, 340, 347
LEO, 24 chebyl, 232, 388
line card, 22 cheby?2, 232, 388
linear, 178, 182 colormap, 334, 368
linear distortion, 206 comments, 342
linear function, 132, 144 complex, 320
linear inequality predicates, 309 conj, 320
linear interpolation, 275 conv, 234
linear phase, 378 demo, 326
linear system, 144 disp, 342
linear time-invariant, 131, 175 lip, 232, 388
linear time-invariant systems, 311 exp, 320
linear, space-invariant, 206 fft, 363, 385, 386, 390
Linear|nterpolator, 275 filter, 234, 386—389
linearity, 208 filter design, 224
of Fourier transforms, 258 floor, 349
LineSgnals, 44 for, 327
local loop, 22 fourierSeries, 363
LocalLoop, 45 freqz, 388
logical connectives, 291 function, 342
|low-earth-orbit, 24 getframe, 337
lowpass, 187, 206 help, 326
lowpass filter, 378 hot, 368
LS, 206 i, 320
LTI, 131, 175 if, 338

LTI systems, 311 imag, 320

406

image, 332, 334, 336
images, 332
imfinfo, 334
imread, 335
input, 344
j, 320
jet, 368
m-files, 341
movie, 337
movies, 336
ones, 337
path, 342
plot, 328
pwd, 341
rand, 347, 349
randn, 376
real, 320
remez, 224, 225
repmat, 332
roots, 319
Signal Processing Toolbox, 384
size, 326, 327
sound, 329, 395
soundsc, 375, 376, 395
specgram, 370, 382
squeeze, 336, 337
stem, 328
stremp, 341
strings, 340
subplot, 329
switch, 341
while, 344
whos, 335
zeros, 337
matrices, 39
matrix, 138, 326
matrix multiplication, 139
McCléellan, 225
Mealy machines, 74
megahertz, 152
member, 286
members, 235
memoryless, 53
meta data, 30
method, 49

methods, 235
MHz, 152
micropascals, 229
Microsoft wave files, 372
microwave radio, 22
millibars, 48
MIMO, 127, 128, 143
min, 68
model, 50
modem, 26
modem negotiation, 30
modes, 360
modulation, 261, 384
modulo N counter, 92
modulus, 314
monotonic, 117
Moore machines, 74
Motorola, 24
Motorola DSP56000, 236
Mouthpiece, 45
movie command in Matlab, 337
movies

in Matlab, 336

INDEX

moving average, 55, 56, 62, 133, 140, 209,

222, 380
on images, 337
muffled sound, 205
multipath, 170
multiple-input, multiple-output, 143

multiple-input, multiple-output system, 127,

128
multipliers, 237
multiply and accumulate, 236
musical instrument, 153
musical instruments, 359
musical scale, 154

NaN, 46, 48

Nats, 2, 285, 290
Natsy, 290

natural numbers, 285
negation, 292
Network, 45

neutral wire, 7
newton, 229

INDEX

Newton's second law of motion, 51
nextSate, 128

noise, 19, 29

nondecreasing, 117

nondeterministic, 72

nondeterministic state machine, 78, 122
normalized frequency, 268

not, 292

not a number, 46, 48

nslookup, 42

NTSC, 10

Nyquist frequency, 270
Nyquist-Shannon sampling theorem, 273, 277

object-oriented, 235
object-oriented languages, 49
OCR, 338

octave, 150

one-to-one, 304, 305

ones command in Matlab, 337
OnOff, 32

onto, 304

open, 291

open-loop controller, 345
optical character recognition, 338
optical fiber, 22

optics, 206

or, 291

order, 232

ordered set, 286, 293, 294
ordering, 65

ordering constraint, 66
oscillator, 148, 353

out of phase, 7

output, 128

output alphabet, 66

output equation, 129-131
output of a state machine, 69
output signal, 56

output signals, 66

Outputs, 66

overloaded, 287

packets, 61
parallel composition, 107
parking meter, 79

407

Parks-McClellan agorithm, 225

parsing, 300

partial orders, 117

pascal, 229

passhand, 224

path command in Matlab, 342

perceived pitch, 270

period, 5

periodic, 168, 170

periodic signal, 157

periodic signals, 246

periodicity of discrete-time frequency response,
182

periodicity of the DTFT, 218

permutation, 294

permutations, 293

phase, 155, 185, 311

phase locked loop, 391

phase modulation, 391

phase response, 187

phase shift, 7, 187

phasor, 185

pitch, 270

pixel, 9, 16

plant, 31

plot command in Matlab, 328

plucked string instrument, 378

polar coordinates, 317

polar representation, 317

polynomial, 311

port alphabet, 104

Position, 12

possibleUpdates, 81

POTS, 20

power, 23, 229

power set, 81, 287

power train, 31

precision, 17

Pred, 289

predicate, 39, 288

Pressure, 3

procedure, 47

procedures, 235

product, 293

product form inputs and outputs, 104

408

product formula, 315, 321
programmable DSP, 236

propagation loss, 23

pseudo-random number generators, 347
Psychoacoustics, 150

psychoacoustics, 149

public address system, 206

PureTone, 4

pwd command in Matlab, 341

guantization, 17

radians, 151, 155
radians per second, 151
radio telephones, 23
ramp, 242
rand function in Matlab, 347, 349
randn command in Matlab, 376
range, 287, 302
Re{z}, 313
reachable, 103, 123
reaction, 67, 129

composite state machines, 97
reactive, 97, 112
real axis, 317
real command in Matlab, 320
real part, 313
real time, 220
real-valued functions, 178
Reals,, 2
Reals, 2, 290
Reals,, 290
receiver, 206
receptive, 72, 81
receptiveness, 72
reconstruction, 267
RecordingStudio, 30
recursion, 237
recursive filter, 230
redundancy, 30
RedundantBitSreams, 30
Reed-Solomon code, 30
relation, 41, 83
remez command in Matlab, 224, 225
Remez exchange algorithm, 225
renaming, 123

INDEX

repmat command in Matlab, 332
resolution, 16

rest, 136

RGB, 8

ripple, 232

RMS, 7

roaming, 24

rolloff, 232

root mean square, 7

roots, 311, 312, 318

roots command in Matlab, 319
roots of unity, 318

router, 61

row vector, 138, 326, 352
rows, 326

safety, 89

sample rate, 267
SampledExp, 15
Sampledimage, 16
Sampled\voice, 15

Sampler, 267

samples, 4

sampling, 15, 267, 393
sampling frequency, 15, 267
sampling interval, 15, 267
sampling period, 15
sampling rate, 15

sampling theorem, 273, 277
satellites, 22, 24

satisfy, 288

sawtooth, 240

scalar, 326

scale, 154

scan lines, 10

Scope block in Simulink, 358
Scott topology, 117

second harmonic, 360

self loop, 72

semantics, 1

sequence, 304

sequences, 13, 294

set, 285

sets and function model, 66
sets and functions model

INDEX

nondeterministic state machines, 81
sewer pipe, 375
Shannon, Claude, 277
shift invariance, 178, 200
shift-and-add summation, 157
short-time Fourier series, 366
side-by-side composition, 98, 99
sifting property, 214, 278
signal, 1
signal flow graph, 237-239
signal flow graphs, 237
signal processing, 149, 180
Signal Processing Toolbox, 384
signal spaces, 1, 20
signum function, 38
simple harmonic motion, 51
simulates, 85
simulation, 84, 356
simulation relation, 85
Simulink, 56, 323, 356
audio, 372
Discrete Pulse Generator, 376
DSP Blockset, 374
DSP Sinks, 374
DSP Sources, 374
From Wave File, 374
Gain, 375
Gain block, 357
Integer Delay, 375, 376
Integrator block, 357, 359
Kronecker delta function, 376
Scope block, 358
simulation parameters, 372
Sum, 375
To Wave Device, 374, 375
To Workspace, 374, 375
To Workspace block, 360
Snc, 47
textbf, 277
sinc function, 277
single-input, single-output system, 127
sinusoidal discrete-time signals, 168
sinusoidal images, 156, 333
sinusoidal signal, 185
SISO, 127, 357

409

size command in Matlab, 326, 327
size of amatrix, 39
solver, 356
Sound, 2
sound, 2
on the Internet, 19
speed of, 375
sound command in Matlab, 329, 395
sound files, 368
sound pressure, 229
soundsc command in Matlab, 375, 376, 395
spatial frequency, 156
spatial resolution, 16
specgram command in Matlab, 370, 382
spectrogram, 363, 368
speed of sound, 375
square matrix, 139, 326
SquareRoot, 45
sgueeze command in Matlab, 336, 337
stability, 352
stable system, 353
state, 65, 69, 75, 127
state estimators, 149
state machine, 65
state machines, 56
state response, 67, 72, 135, 145
state space, 66
state transition, 69
state transition diagram, 69
state transitions, 65
state update equation, 129-131
state-determined, 76
state-space model, 129, 140
continuous-time, 144
state-space models, 65
continuous time, 356
SateMachine, 66
Sates, 66
stem command in Matlab, 328
stem plot, 4
step, 129
step number, 66
step response, 203, 243, 244
steps, 66
stock market prices, 222

410

stock prices, 55

stopband, 224

storage, 19

string instrument modeling, 378
strings, 294

strings in Matlab, 340

Strong, 378

stutter, 106

stuttering element, 67, 97
stuttering reaction, 68

subplot command in Matlab, 329
subscriber line, 22

such that, 288

Sumin Simulink, 375

summing signals, 5

SumOfTones, 5

superposition, 132, 144

switch, 22, 61

symbolic mathematical software, 48
Symbols, 14

symmetry of Fourier transforms, 255
synchronous languages, 98
synchronous/reactive, 97
synchronous/reactive systems, 112
synchrony, 97, 110

syntax, 1

system, 1

tables, 41

tapped delay line, 237

telephone, 20

telephone answering machine, 69
third harmonic, 360

three-prong plug, 7

timbre, 153, 361, 366

Time, 3

timeindex, 131

timeinvariant, 176, 182

time shifting, 256

time-domain signals, 149, 176
time-domain systems, 176
time-invariant, 131, 177

ting, 50, 51

To Wave Devicein Simulink, 374, 375
To Workspace block in Simulink, 360

INDEX

To Workspace in Simulink, 374, 375
trace, 14, 73

train whistle, 166, 167
training signals, 31
transient, 62

transition, 69

transition band, 224
trangitivity of simulation, 86
trandation, 19

transmission, 19

transmitter, 206

transpose, 138
transposition, 352

triad, 150

trigonometric identities, 55, 148, 316
true assertion, 286

truecolor, 335

truncation, 18

truth table, 301

tuning fork, 50, 51, 359
tuple, 129, 294, 304

tuples, 296

twisted pair, 22

type constraint, 101

uint8, 335

ultrasonic, 152

uniform convergence, 164
union, 291

uniqueness of the Fourier series, 173
unit delay, 234

unit step, 55, 203, 230, 243, 265
UnitDelay, 92, 124

universal quantification, 289
unstable, 137

unstable system, 353

unstable systems, 352

update, 66

update function, 66

update table, 74

upsampling, 395

variable, 287
vector, 138
vectorization, 328
Vertical ace, 8

INDEX 411

video, 10

VideoFrame, 10

visual syntax, 56

\oice, 3

voiceband data modem, 26
\oices, 44

Wall Street, 55, 56, 222

watts, 229

wavefiles, 372

waveform, 3

weighted delta function, 212
weighted delta functions, 212
well formed, 111

well-formed expressions, 299
well-tempered scale, 154
western musical scale, 154
while command in Matlab, 344
whos command in Matlab, 335
wildcard, 106

wireless, 23

Zero-input output response, 136
zero-input response, 136, 143
zero-input state response, 136
zero-order hold, 275

zero-state impulse response, 137, 141
zero-state output response, 136
zero-state response, 136, 143
zero-state state response, 136
ZeroOrderHold, 275

zeros command in Matlab, 337

	Signals and Systems
	Signals
	Audio signals
	Images
	Video signals
	Signals representing physical attributes
	Sequences
	Discrete signals and sampling

	Systems
	Systems as functions
	Telecommunications systems
	Audio storage and retrieval
	Modem negotiation
	Feedback control system

	Summary

	Defining Signals and Systems
	Defining functions
	Declarative assignment
	Graphs
	Tables
	Procedures
	Composition
	Declarative vs. imperative

	Defining signals
	Declarative definitions
	Imperative definitions
	Physical modeling

	Defining systems
	Memoryless systems
	Differential equations
	Difference equations
	Composing systems using block diagrams

	State-Space Models
	State machines
	Updates
	Stuttering

	Finite state machines
	State transition diagrams
	Update table

	Nondeterministic state machines
	State transition diagram
	Sets and functions model

	Simulation and bisimulation
	Relating behaviors

	Composing State Machines
	Synchrony
	Side-by-side composition
	Cascade composition
	Product-form inputs and outputs
	General feedforward composition
	Hierarchical composition
	Feedback
	Feedback composition with no inputs
	Feedback composition with inputs
	Feedback composition of multiple machines

	Nondeterministic machines

	Linear Systems
	Operation of an infinite state machine
	Time

	One-dimensional SISO systems
	Zero-state and zero-input response

	Multidimensional SISO systems
	Multidimensional MIMO systems
	Linear systems
	Continuous-time state-space models

	Frequency Domain
	Frequency decomposition
	Phase
	Spatial frequency
	Periodic and finite signals
	Fourier series
	Uniqueness of the Fourier series
	Periodic, finite, and aperiodic signals
	Fourier series approximations to images

	Discrete-time signals
	Periodicity
	The discrete-time Fourier series

	Frequency Response
	LTI systems
	Time invariance
	Linearity
	Linearity and time-invariance
	Discrete-time LTI systems

	Finding and using the frequency response
	The Fourier series with complex exponentials
	Examples

	Determining the Fourier series coefficients
	Negative frequencies

	Frequency response and the fourier series
	Frequency response of composite systems
	Cascade connection
	Feedback connection

	Filtering
	Convolution
	Convolution sum and integral
	Impulses
	Signals as sums of weighted delta functions
	Impulse response and convolution

	Frequency response and impulse response
	Causality
	Finite impulse response (FIR) filters
	Design of FIR filters
	Decibels

	Infinite impulse response (IIR) filters
	Designing IIR filters

	Implementation of filters
	Matlab implementation
	Signal flow graphs

	The Four Fourier Transforms
	Notation
	The Fourier series (FS)
	The discrete Fourier transform (DFT)
	The discrete-Time Fourier transform (DTFT)
	The continuous-time Fourier transform
	Relationship to convolution
	Properties and examples
	Conjugate symmetry
	Time shifting
	Linearity
	Constant signals
	Frequency shifting and modulation

	Sampling and Reconstruction
	Sampling
	Sampling a sinusoid
	Aliasing
	Perceived pitch experiment
	Avoiding aliasing ambiguities

	Reconstruction
	A model for reconstruction

	The Nyquist-Shannon sampling theorem

	Sets and Functions
	Sets
	Assignment and assertion
	Sets of sets
	Variables and predicates
	Quantification over sets
	Some useful sets
	Set operations: union, intersection, complement
	Predicate operations
	Permutations and combinations
	Product sets
	Evaluating a predicate expression

	Functions
	Defining functions
	Tuples and sequences as functions
	Function properties

	Summary

	Complex Numbers
	Imaginary numbers
	Arithmetic of imaginary numbers
	Complex numbers
	Arithmetic of complex numbers
	Exponentials
	Polar coordinates

	Laboratory Exercises
	Arrays and sound
	In-lab section
	Independent section

	Images
	Images in Matlab
	In-lab section
	Independent section

	State machines
	Background
	In-lab section
	Independent section

	Control systems
	Background
	In-lab section
	Independent section

	Difference equations
	In-lab section
	Independent section

	Differential equations
	Background
	In-lab section
	Independent section

	Spectrum
	Background
	In-lab section
	Independent section

	Comb filters
	Background
	In-lab section
	Independent section

	Plucked string instrument
	Background
	In-lab section
	Independent section

	Modulation and demodulation
	Background
	In-lab section
	Independent section

	Sampling and aliasing
	In-lab section

